Namespaces
Variants
Actions

Difference between revisions of "Heinz-Kato-Furuta inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
In the sequel, a capital letter denotes a bounded [[Linear operator|linear operator]] on a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101301.png" />. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101302.png" /> is said to be positive (denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101303.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101304.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101305.png" />.
+
<!--
 +
h1101301.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/H110/H.1100130 Heinz\ANDKato\ANDFuruta inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The following Heinz–Kato–Furuta inequality can be considered as an extension of the [[Heinz–Kato inequality|Heinz–Kato inequality]], since for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101306.png" /> the Heinz–Kato inequality is obtained from the Heinz–Kato–Furuta inequality.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The Heinz–Kato–Furuta inequality (1994; cf. [[#References|[a2]]]): If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101307.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101308.png" /> are positive operators such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h1101309.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013010.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013011.png" />, then for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013012.png" />:
+
In the sequel, a capital letter denotes a bounded [[Linear operator|linear operator]] on a [[Hilbert space|Hilbert space]] $  H $.  
 +
An operator  $  T $
 +
is said to be positive (denoted by  $  T \geq  0 $)
 +
if  $  ( {Tx } , x ) \geq  0 $
 +
for all $  x \in H $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
The following Heinz–Kato–Furuta inequality can be considered as an extension of the [[Heinz–Kato inequality|Heinz–Kato inequality]], since for  $  \alpha + \beta = 1 $
 +
the Heinz–Kato inequality is obtained from the Heinz–Kato–Furuta inequality.
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013014.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013015.png" />.
+
The Heinz–Kato–Furuta inequality (1994; cf. [[#References|[a2]]]): If  $  A $
 +
and  $  B $
 +
are positive operators such that $  \| {Tx } \| \leq  \| {Ax } \| $
 +
and  $  \| {T  ^ {*} y } \| \leq  \| {By } \| $
 +
for all  $  x, y \in H $,
 +
then for all  $  x,y \in H $:
  
As generalizations of the Heinz–Kato–Furuta inequality, two determinant-type generalizations, expressed in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013018.png" />, can be obtained by using the [[Furuta inequality|Furuta inequality]]. It turns out that each of these two generalizations is equivalent to the Furuta inequality. Results similar to these determinant-type generalizations but under the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013020.png" />, which are weaker than the original conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110130/h11013022.png" /> in the Heinz–Kato inequality, have also been obtained. A nice application of the Heinz–Kato–Furuta inequality is given in [[#References|[a1]]].
+
$$ \tag{a1 }
 +
\left | {( T \left | T \right | ^ {\alpha + \beta - 1 } x,y ) } \right | \leq  \left \| {A  ^  \alpha  x } \right \|  \left \| {B  ^  \beta  y } \right \|
 +
$$
 +
 
 +
for all  $  \alpha, \beta \in [ 0,1 ] $
 +
such that  $  \alpha + \beta \geq  1 $.
 +
 
 +
As generalizations of the Heinz–Kato–Furuta inequality, two determinant-type generalizations, expressed in terms of $  T $,  
 +
$  | T | $
 +
and $  | {T  ^ {*} } | $,  
 +
can be obtained by using the [[Furuta inequality|Furuta inequality]]. It turns out that each of these two generalizations is equivalent to the Furuta inequality. Results similar to these determinant-type generalizations but under the conditions $  { \mathop{\rm log} } | T | \leq  { \mathop{\rm log} } A $
 +
and $  { \mathop{\rm log} } | {T  ^ {*} } | \leq  { \mathop{\rm log} } B $,  
 +
which are weaker than the original conditions $  T  ^ {*} T \leq  A  ^ {2} $
 +
and $  TT  ^ {*} \leq  B  ^ {2} $
 +
in the Heinz–Kato inequality, have also been obtained. A nice application of the Heinz–Kato–Furuta inequality is given in [[#References|[a1]]].
  
 
Additional references can be found in [[Heinz inequality|Heinz inequality]].
 
Additional references can be found in [[Heinz inequality|Heinz inequality]].

Latest revision as of 22:10, 5 June 2020


In the sequel, a capital letter denotes a bounded linear operator on a Hilbert space $ H $. An operator $ T $ is said to be positive (denoted by $ T \geq 0 $) if $ ( {Tx } , x ) \geq 0 $ for all $ x \in H $.

The following Heinz–Kato–Furuta inequality can be considered as an extension of the Heinz–Kato inequality, since for $ \alpha + \beta = 1 $ the Heinz–Kato inequality is obtained from the Heinz–Kato–Furuta inequality.

The Heinz–Kato–Furuta inequality (1994; cf. [a2]): If $ A $ and $ B $ are positive operators such that $ \| {Tx } \| \leq \| {Ax } \| $ and $ \| {T ^ {*} y } \| \leq \| {By } \| $ for all $ x, y \in H $, then for all $ x,y \in H $:

$$ \tag{a1 } \left | {( T \left | T \right | ^ {\alpha + \beta - 1 } x,y ) } \right | \leq \left \| {A ^ \alpha x } \right \| \left \| {B ^ \beta y } \right \| $$

for all $ \alpha, \beta \in [ 0,1 ] $ such that $ \alpha + \beta \geq 1 $.

As generalizations of the Heinz–Kato–Furuta inequality, two determinant-type generalizations, expressed in terms of $ T $, $ | T | $ and $ | {T ^ {*} } | $, can be obtained by using the Furuta inequality. It turns out that each of these two generalizations is equivalent to the Furuta inequality. Results similar to these determinant-type generalizations but under the conditions $ { \mathop{\rm log} } | T | \leq { \mathop{\rm log} } A $ and $ { \mathop{\rm log} } | {T ^ {*} } | \leq { \mathop{\rm log} } B $, which are weaker than the original conditions $ T ^ {*} T \leq A ^ {2} $ and $ TT ^ {*} \leq B ^ {2} $ in the Heinz–Kato inequality, have also been obtained. A nice application of the Heinz–Kato–Furuta inequality is given in [a1].

Additional references can be found in Heinz inequality.

References

[a1] M. Fujii, S. Izumino, R. Nakamoto, "Classes of operators determined by the Heinz–Kato–Furuta inequality and the Hölder–MacCarthy inequality" Nihonkai Math. J. , 5 (1994) pp. 61–67
[a2] T. Furuta, "An extension of the Heinz–Kato theorem" Proc. Amer. Math. Soc. , 120 (1994) pp. 785–787
How to Cite This Entry:
Heinz-Kato-Furuta inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heinz-Kato-Furuta_inequality&oldid=47203
This article was adapted from an original article by M. Fujii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article