Difference between revisions of "Harmonic measure"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0465001.png | ||
+ | $#A+1 = 87 n = 0 | ||
+ | $#C+1 = 87 : ~/encyclopedia/old_files/data/H046/H.0406500 Harmonic measure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A concept in the theory of harmonic functions (cf. [[Harmonic function|Harmonic function]]) connected with estimating the modulus of an analytic function inside a domain if certain bounds on the modulus on the boundary of the domain are known [[#References|[1]]], [[#References|[2]]]. Let $ D $ | |
+ | be a bounded open set in the Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 2 $; | ||
+ | let $ \Gamma = \partial D $ | ||
+ | be the boundary of $ D $; | ||
+ | and let $ f $ | ||
+ | be a finite real-valued continuous function on $ \Gamma $. | ||
+ | To each such function $ f $ | ||
+ | there corresponds a unique harmonic function $ H _ {f} ( x) $ | ||
+ | on $ D $ | ||
+ | which, for $ f $, | ||
+ | is a generalized solution of the [[Dirichlet problem|Dirichlet problem]]. If the point $ x \in D $ | ||
+ | is assumed to be fixed, the functional $ H _ {f} ( x) $ | ||
+ | will define on the compact set $ \Gamma $ | ||
+ | a positive Radon measure $ \omega ( x) = \omega ( x, D) $, | ||
+ | which is called the harmonic measure at the point $ x $. | ||
+ | The formula for the representation of the generalized solution of the Dirichlet problem, | ||
− | + | $$ | |
+ | H _ {f} ( x) = \ | ||
+ | \int\limits f ( y) d \omega ( x; D), | ||
+ | $$ | ||
− | + | obtained by Ch.J. de la Vallée-Poussin by the [[Balayage method|balayage method]], is valid for all functions $ f $ | |
+ | which are continuous on $ \Gamma $. | ||
+ | Moreover, if $ E $ | ||
+ | is an arbitrary Borel set on $ \Gamma $, | ||
+ | the harmonic measure $ \omega ( x; E, D) $, | ||
+ | $ x \in D $, | ||
+ | of $ E $ | ||
+ | at $ x $ | ||
+ | is equal to the value at $ x $ | ||
+ | of the generalized solution of the Dirichlet problem for the characteristic function $ \chi _ {E} ( y) $, | ||
+ | $ y \in \Gamma $, | ||
+ | of $ E $. | ||
− | + | The basic properties of a harmonic measure are: $ \omega ( x; E, D) $ | |
+ | is a harmonic function of the point $ x $ | ||
+ | in $ D $; | ||
− | + | $$ | |
+ | 0 \leq \omega ( x; E, D) \leq 1; | ||
+ | $$ | ||
− | + | $$ | |
+ | 1 - \omega ( x; E, D) = \omega ( x; \Gamma \setminus E, D); | ||
+ | $$ | ||
− | + | if $ D $ | |
+ | is a domain and $ \omega ( x; E, D) = 0 $ | ||
+ | even at a single point $ x \in D $, | ||
+ | then $ \omega ( x; E, D) \equiv 0 $. | ||
− | Explicit computations of harmonic measures are possible only for the simplest domains | + | In the last-named case $ E $ |
+ | is known as a set of harmonic measure zero. If a compact set $ K \subset \mathbf R ^ {n} $ | ||
+ | has harmonic measure zero with respect to some domain $ D $, | ||
+ | $ K \subset D $, | ||
+ | i.e. $ \omega ( x; K, D \setminus K) = 0 $, | ||
+ | then it has harmonic measure zero with respect to all other domains, i.e. $ K $ | ||
+ | is a set of absolute harmonic measure zero. A set $ K $ | ||
+ | has absolute harmonic measure zero if and only if it has zero (harmonic) [[Capacity|capacity]]. | ||
+ | |||
+ | As regards applications to the theory of functions of a complex variable, the dependence of a harmonic measure on the domain $ D $ | ||
+ | is of special importance. This dependence is expressed by the principle of harmonic measure (cf. [[Harmonic measure, principle of|Harmonic measure, principle of]]), which states that a harmonic measure does not decrease under mappings of the domain $ D $ | ||
+ | realized by univalent analytic functions $ w = w( z) $, | ||
+ | $ z \in D $. | ||
+ | In particular, a harmonic measure remains unchanged under a one-to-one conformal mapping. | ||
+ | |||
+ | Explicit computations of harmonic measures are possible only for the simplest domains $ D $( | ||
+ | mainly for the disc, for the sphere, for a half-plane, and for a half-space; see [[Poisson integral|Poisson integral]]). This is the reason for the importance of the various estimation methods for harmonic measure [[#References|[4]]], [[#References|[5]]], [[#References|[6]]], [[#References|[7]]], which are mainly based on the principle of extension of domain (cf. [[Extension of domain, principle of|Extension of domain, principle of]]). In the simplest form, for $ n = 2 $, | ||
+ | this principle consists in the following: Let a finitely-connected domain $ D $ | ||
+ | be bounded by a finite number of Jordan curves $ \Gamma $ | ||
+ | and let $ \alpha $ | ||
+ | be an arc on $ \Gamma $. | ||
+ | Then, if the domain $ D $ | ||
+ | is extended in some way across the complementary part $ \Gamma \setminus \alpha $ | ||
+ | of the boundary, the harmonic measure $ \omega ( z; \alpha , D) $ | ||
+ | can only increase. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> T. Carleman, "Sur les fonctions inverses des fonctions entières d'ordre fini" ''Ark. Mat.'' , '''15''' : 10 (1921) pp. 1–7</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" ''Acta Soc. Sci. Fennica'' , '''50''' : 5 (1922) pp. 1–46</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, ''Ann. Inst. H. Poincaré'' , '''2''' (1932) pp. 169–232</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> K. Haliste, "Estimates of harmonic measure" ''Ark. Mat.'' , '''6''' : 1 (1965) pp. 1–31</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T. Carleman, "Sur les fonctions inverses des fonctions entières d'ordre fini" ''Ark. Mat.'' , '''15''' : 10 (1921) pp. 1–7</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" ''Acta Soc. Sci. Fennica'' , '''50''' : 5 (1922) pp. 1–46</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, ''Ann. Inst. H. Poincaré'' , '''2''' (1932) pp. 169–232</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> K. Haliste, "Estimates of harmonic measure" ''Ark. Mat.'' , '''6''' : 1 (1965) pp. 1–31</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Harmonic measure is an important tool in axiomatic potential theory (cf. [[Potential theory, abstract|Potential theory, abstract]]), see [[#References|[a1]]]. | Harmonic measure is an important tool in axiomatic potential theory (cf. [[Potential theory, abstract|Potential theory, abstract]]), see [[#References|[a1]]]. | ||
− | For domains in | + | For domains in $ \mathbf C $ |
+ | very precise estimates for harmonic measure in terms of [[Hausdorff measure|Hausdorff measure]] have been obtained recently. Let $ h( t) $ | ||
+ | be a continuous increasing function for $ t \geq 0 $, | ||
+ | $ h( 0)= 0 $, | ||
+ | and let $ E $ | ||
+ | be a [[Borel set|Borel set]]. Let $ \Lambda _ {h} ( E) $ | ||
+ | denote the Hausdorff measure with respect to $ h $ | ||
+ | of $ E $. | ||
+ | Let $ D $ | ||
+ | be a domain in $ \mathbf C $ | ||
+ | and set $ \omega ( E) = \omega ( x; E, D) $. | ||
+ | Makarov's theorems [[#References|[a3]]] are: 1) Suppose that $ D $ | ||
+ | is simply connected. If $ \lim\limits _ {t \rightarrow \infty } h( t) /t = 0 $, | ||
+ | then $ \omega $ | ||
+ | is singular with respect to $ \Lambda _ {h} $, | ||
+ | i.e. $ \omega \perp \Lambda _ {h} $. | ||
+ | 2) There exist constants $ C _ {1} $, | ||
+ | $ C _ {2} $ | ||
+ | with the following property: Let | ||
− | + | $$ | |
+ | h _ {i} ( t) = t \mathop{\rm exp} \left \{ C _ {i} \sqrt {\left ( \mathop{\rm log} | ||
+ | \frac{1}{t} | ||
+ | \right ) \mathop{\rm log} \mathop{\rm log} \mathop{\rm log} | ||
+ | \frac{1}{t} | ||
+ | } | ||
+ | \right \} ,\ i = 1, 2. | ||
+ | $$ | ||
− | Then for every Jordan domain | + | Then for every Jordan domain $ D $, |
+ | $ \omega $ | ||
+ | is absolutely continuous with respect to $ \Lambda _ {h _ {1} } $, | ||
+ | i.e. $ \omega \ll \Lambda _ {h _ {1} } $. | ||
+ | However, there exists a Jordan domain $ D $ | ||
+ | with $ \omega \perp \Lambda _ {h _ {2} } $. | ||
− | Next (B. Øksendal, Jones, Wolff): If < | + | Next (B. Øksendal, Jones, Wolff): If $ 1 < a \leq 2 $, |
+ | then for every domain $ D $ | ||
+ | in $ \mathbf C $, | ||
+ | $ \omega \perp \Lambda _ {( t ^ \alpha ) } $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Applications of harmonic measure" , Wiley (Interscience) (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Makarov, "On the distortion of boundary sets under conformal mappings" ''Proc. London Math. Soc.'' , '''51''' (1985) pp. 369–384</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Garnett, "Applications of harmonic measure" , Wiley (Interscience) (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Makarov, "On the distortion of boundary sets under conformal mappings" ''Proc. London Math. Soc.'' , '''51''' (1985) pp. 369–384</TD></TR></table> |
Latest revision as of 19:43, 5 June 2020
A concept in the theory of harmonic functions (cf. Harmonic function) connected with estimating the modulus of an analytic function inside a domain if certain bounds on the modulus on the boundary of the domain are known [1], [2]. Let $ D $
be a bounded open set in the Euclidean space $ \mathbf R ^ {n} $,
$ n \geq 2 $;
let $ \Gamma = \partial D $
be the boundary of $ D $;
and let $ f $
be a finite real-valued continuous function on $ \Gamma $.
To each such function $ f $
there corresponds a unique harmonic function $ H _ {f} ( x) $
on $ D $
which, for $ f $,
is a generalized solution of the Dirichlet problem. If the point $ x \in D $
is assumed to be fixed, the functional $ H _ {f} ( x) $
will define on the compact set $ \Gamma $
a positive Radon measure $ \omega ( x) = \omega ( x, D) $,
which is called the harmonic measure at the point $ x $.
The formula for the representation of the generalized solution of the Dirichlet problem,
$$ H _ {f} ( x) = \ \int\limits f ( y) d \omega ( x; D), $$
obtained by Ch.J. de la Vallée-Poussin by the balayage method, is valid for all functions $ f $ which are continuous on $ \Gamma $. Moreover, if $ E $ is an arbitrary Borel set on $ \Gamma $, the harmonic measure $ \omega ( x; E, D) $, $ x \in D $, of $ E $ at $ x $ is equal to the value at $ x $ of the generalized solution of the Dirichlet problem for the characteristic function $ \chi _ {E} ( y) $, $ y \in \Gamma $, of $ E $.
The basic properties of a harmonic measure are: $ \omega ( x; E, D) $ is a harmonic function of the point $ x $ in $ D $;
$$ 0 \leq \omega ( x; E, D) \leq 1; $$
$$ 1 - \omega ( x; E, D) = \omega ( x; \Gamma \setminus E, D); $$
if $ D $ is a domain and $ \omega ( x; E, D) = 0 $ even at a single point $ x \in D $, then $ \omega ( x; E, D) \equiv 0 $.
In the last-named case $ E $ is known as a set of harmonic measure zero. If a compact set $ K \subset \mathbf R ^ {n} $ has harmonic measure zero with respect to some domain $ D $, $ K \subset D $, i.e. $ \omega ( x; K, D \setminus K) = 0 $, then it has harmonic measure zero with respect to all other domains, i.e. $ K $ is a set of absolute harmonic measure zero. A set $ K $ has absolute harmonic measure zero if and only if it has zero (harmonic) capacity.
As regards applications to the theory of functions of a complex variable, the dependence of a harmonic measure on the domain $ D $ is of special importance. This dependence is expressed by the principle of harmonic measure (cf. Harmonic measure, principle of), which states that a harmonic measure does not decrease under mappings of the domain $ D $ realized by univalent analytic functions $ w = w( z) $, $ z \in D $. In particular, a harmonic measure remains unchanged under a one-to-one conformal mapping.
Explicit computations of harmonic measures are possible only for the simplest domains $ D $( mainly for the disc, for the sphere, for a half-plane, and for a half-space; see Poisson integral). This is the reason for the importance of the various estimation methods for harmonic measure [4], [5], [6], [7], which are mainly based on the principle of extension of domain (cf. Extension of domain, principle of). In the simplest form, for $ n = 2 $, this principle consists in the following: Let a finitely-connected domain $ D $ be bounded by a finite number of Jordan curves $ \Gamma $ and let $ \alpha $ be an arc on $ \Gamma $. Then, if the domain $ D $ is extended in some way across the complementary part $ \Gamma \setminus \alpha $ of the boundary, the harmonic measure $ \omega ( z; \alpha , D) $ can only increase.
References
[1] | T. Carleman, "Sur les fonctions inverses des fonctions entières d'ordre fini" Ark. Mat. , 15 : 10 (1921) pp. 1–7 |
[2] | F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" Acta Soc. Sci. Fennica , 50 : 5 (1922) pp. 1–46 |
[3] | Ch.J. de la Vallée-Poussin, Ann. Inst. H. Poincaré , 2 (1932) pp. 169–232 |
[4] | R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German) |
[5] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[6] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) |
[7] | K. Haliste, "Estimates of harmonic measure" Ark. Mat. , 6 : 1 (1965) pp. 1–31 |
Comments
Harmonic measure is an important tool in axiomatic potential theory (cf. Potential theory, abstract), see [a1].
For domains in $ \mathbf C $ very precise estimates for harmonic measure in terms of Hausdorff measure have been obtained recently. Let $ h( t) $ be a continuous increasing function for $ t \geq 0 $, $ h( 0)= 0 $, and let $ E $ be a Borel set. Let $ \Lambda _ {h} ( E) $ denote the Hausdorff measure with respect to $ h $ of $ E $. Let $ D $ be a domain in $ \mathbf C $ and set $ \omega ( E) = \omega ( x; E, D) $. Makarov's theorems [a3] are: 1) Suppose that $ D $ is simply connected. If $ \lim\limits _ {t \rightarrow \infty } h( t) /t = 0 $, then $ \omega $ is singular with respect to $ \Lambda _ {h} $, i.e. $ \omega \perp \Lambda _ {h} $. 2) There exist constants $ C _ {1} $, $ C _ {2} $ with the following property: Let
$$ h _ {i} ( t) = t \mathop{\rm exp} \left \{ C _ {i} \sqrt {\left ( \mathop{\rm log} \frac{1}{t} \right ) \mathop{\rm log} \mathop{\rm log} \mathop{\rm log} \frac{1}{t} } \right \} ,\ i = 1, 2. $$
Then for every Jordan domain $ D $, $ \omega $ is absolutely continuous with respect to $ \Lambda _ {h _ {1} } $, i.e. $ \omega \ll \Lambda _ {h _ {1} } $. However, there exists a Jordan domain $ D $ with $ \omega \perp \Lambda _ {h _ {2} } $.
Next (B. Øksendal, Jones, Wolff): If $ 1 < a \leq 2 $, then for every domain $ D $ in $ \mathbf C $, $ \omega \perp \Lambda _ {( t ^ \alpha ) } $.
References
[a1] | C. Constantinescu, A. Cornea, "Potential theory on harmonic spaces" , Springer (1972) |
[a2] | J.B. Garnett, "Applications of harmonic measure" , Wiley (Interscience) (1986) |
[a3] | N. Makarov, "On the distortion of boundary sets under conformal mappings" Proc. London Math. Soc. , 51 (1985) pp. 369–384 |
Harmonic measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_measure&oldid=47182