|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449701.png" /> of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449702.png" /> into a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449703.png" />''
| + | <!-- |
| + | g0449701.png |
| + | $#A+1 = 54 n = 0 |
| + | $#C+1 = 54 : ~/encyclopedia/old_files/data/G044/G.0404970 Graph of a mapping |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449704.png" /> of the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449705.png" /> consisting of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449706.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449707.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449708.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g0449709.png" /> are topological spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497010.png" /> is a continuous mapping and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497011.png" /> is the projection of the topological product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497012.png" /> onto the factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497013.png" />, then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497014.png" /> is a homeomorphism of the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497015.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497016.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497017.png" /> is a [[Hausdorff space|Hausdorff space]], then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497018.png" /> is closed in the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497019.png" />. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | '' $ f: X \rightarrow Y $ |
| + | of a set $ X $ |
| + | into a set $ Y $'' |
| + | |
| + | The subset $ \Gamma $ |
| + | of the product $ X \times Y $ |
| + | consisting of the points $ ( x, f ( x)) $, |
| + | $ x \in X $. |
| + | If $ X $ |
| + | and $ Y $ |
| + | are topological spaces, $ f $ |
| + | is a continuous mapping and $ p: X \times Y \rightarrow X $ |
| + | is the projection of the topological product $ X \times Y $ |
| + | onto the factor $ X $, |
| + | then the mapping $ p $ |
| + | is a homeomorphism of the subspace $ \Gamma $ |
| + | onto $ X $. |
| + | If $ Y $ |
| + | is a [[Hausdorff space|Hausdorff space]], then the set $ \Gamma $ |
| + | is closed in the product $ X \times Y $. |
| | | |
| ''B.A. Pasynkov'' | | ''B.A. Pasynkov'' |
| | | |
− | In the case of a real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497021.png" /> real arguments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497022.png" /> and domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497023.png" />, its graph is the set of all ordered pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497025.png" /> is any point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497026.png" />; in other words, it is the set of all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497028.png" />. Having chosen a coordinate system (Cartesian, polar or any other coordinates), the numerical points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497030.png" /> can be represented by points of the plane or space. For real-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497031.png" /> in one real variable which have derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497033.png" />, in more or less complicated examples the graph can be sketched by studying the signs of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497035.png" />. The sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497036.png" /> is an indicator of the monotony of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497037.png" />, while the sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497038.png" /> indicates the direction of [[Convexity|convexity]] of the graph of the function. To obtain an idea on the graph of a real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497039.png" /> in two real variables, the method of sections may be employed: One studies the sections of the graph by certain planes, in particular by planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497040.png" />; the projection of this section on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497041.png" />-plane is said to be a level set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497042.png" />. Similarly, for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497043.png" /> defined in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497044.png" />, the level set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497045.png" /> at level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497047.png" /> is an arbitrary number, is the set of all solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497048.png" />. The solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497049.png" /> must be found in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497050.png" />. A level set may prove to be empty. If a level set is a line or a surface, it is known as a level line or a level surface of the function. | + | In the case of a real-valued function $ f $ |
| + | of $ n $ |
| + | real arguments $ x _ {1} \dots x _ {n} $ |
| + | and domain of definition $ E ^ {n} $, |
| + | its graph is the set of all ordered pairs $ (( x _ {1} \dots x _ {n} ), f ( x _ {1} \dots x _ {n} )) $, |
| + | where $ ( x _ {1} \dots x _ {n} ) $ |
| + | is any point of $ E ^ {n} $; |
| + | in other words, it is the set of all points $ ( x _ {1} \dots x _ {n} , f ( x _ {1} \dots x _ {n} )) $ |
| + | in $ E ^ {n} \times \mathbf R $. |
| + | Having chosen a coordinate system (Cartesian, polar or any other coordinates), the numerical points $ ( x, f ( x)) $, |
| + | $ ( x, y, f ( x, y)) $ |
| + | can be represented by points of the plane or space. For real-valued functions $ f $ |
| + | in one real variable which have derivatives $ f ^ { \prime } $, |
| + | $ f ^ { \prime\prime } $, |
| + | in more or less complicated examples the graph can be sketched by studying the signs of $ f ^ { \prime } $ |
| + | and $ f ^ { \prime\prime } $. |
| + | The sign of $ f ^ { \prime } $ |
| + | is an indicator of the monotony of $ f $, |
| + | while the sign of $ f ^ { \prime\prime } $ |
| + | indicates the direction of [[Convexity|convexity]] of the graph of the function. To obtain an idea on the graph of a real-valued function $ z $ |
| + | in two real variables, the method of sections may be employed: One studies the sections of the graph by certain planes, in particular by planes $ z = c $; |
| + | the projection of this section on the $ xy $- |
| + | plane is said to be a level set of $ z $. |
| + | Similarly, for a function $ f $ |
| + | defined in a domain $ E ^ {n} $, |
| + | the level set of $ f $ |
| + | at level $ c $, |
| + | where $ c $ |
| + | is an arbitrary number, is the set of all solutions of the equation $ c = f ( x _ {1} \dots x _ {n} ) $. |
| + | The solutions $ ( x _ {1} \dots x _ {n} ) $ |
| + | must be found in $ E ^ {n} $. |
| + | A level set may prove to be empty. If a level set is a line or a surface, it is known as a level line or a level surface of the function. |
| | | |
| ''A.A. Konyushkov'' | | ''A.A. Konyushkov'' |
| | | |
| ====Comments==== | | ====Comments==== |
− | An extremely important theorem in functional analysis is the so-called [[Closed-graph theorem|closed-graph theorem]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497052.png" /> are Fréchet spaces (cf. [[Fréchet space|Fréchet space]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497053.png" /> is a linear mapping with a closed graph, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044970/g04497054.png" /> is continuous. Many generalizations of this result are known (see [[#References|[a1]]]). | + | An extremely important theorem in functional analysis is the so-called [[Closed-graph theorem|closed-graph theorem]]: If $ X $ |
| + | and $ Y $ |
| + | are Fréchet spaces (cf. [[Fréchet space|Fréchet space]]) and $ f : X \rightarrow Y $ |
| + | is a linear mapping with a closed graph, then $ f $ |
| + | is continuous. Many generalizations of this result are known (see [[#References|[a1]]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. De Wilde, "Closed graph theorems and webbed spaces" , Pitman (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Macmillan (1966)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. De Wilde, "Closed graph theorems and webbed spaces" , Pitman (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.H. Schaefer, "Topological vector spaces" , Macmillan (1966)</TD></TR></table> |
$ f: X \rightarrow Y $
of a set $ X $
into a set $ Y $
The subset $ \Gamma $
of the product $ X \times Y $
consisting of the points $ ( x, f ( x)) $,
$ x \in X $.
If $ X $
and $ Y $
are topological spaces, $ f $
is a continuous mapping and $ p: X \times Y \rightarrow X $
is the projection of the topological product $ X \times Y $
onto the factor $ X $,
then the mapping $ p $
is a homeomorphism of the subspace $ \Gamma $
onto $ X $.
If $ Y $
is a Hausdorff space, then the set $ \Gamma $
is closed in the product $ X \times Y $.
B.A. Pasynkov
In the case of a real-valued function $ f $
of $ n $
real arguments $ x _ {1} \dots x _ {n} $
and domain of definition $ E ^ {n} $,
its graph is the set of all ordered pairs $ (( x _ {1} \dots x _ {n} ), f ( x _ {1} \dots x _ {n} )) $,
where $ ( x _ {1} \dots x _ {n} ) $
is any point of $ E ^ {n} $;
in other words, it is the set of all points $ ( x _ {1} \dots x _ {n} , f ( x _ {1} \dots x _ {n} )) $
in $ E ^ {n} \times \mathbf R $.
Having chosen a coordinate system (Cartesian, polar or any other coordinates), the numerical points $ ( x, f ( x)) $,
$ ( x, y, f ( x, y)) $
can be represented by points of the plane or space. For real-valued functions $ f $
in one real variable which have derivatives $ f ^ { \prime } $,
$ f ^ { \prime\prime } $,
in more or less complicated examples the graph can be sketched by studying the signs of $ f ^ { \prime } $
and $ f ^ { \prime\prime } $.
The sign of $ f ^ { \prime } $
is an indicator of the monotony of $ f $,
while the sign of $ f ^ { \prime\prime } $
indicates the direction of convexity of the graph of the function. To obtain an idea on the graph of a real-valued function $ z $
in two real variables, the method of sections may be employed: One studies the sections of the graph by certain planes, in particular by planes $ z = c $;
the projection of this section on the $ xy $-
plane is said to be a level set of $ z $.
Similarly, for a function $ f $
defined in a domain $ E ^ {n} $,
the level set of $ f $
at level $ c $,
where $ c $
is an arbitrary number, is the set of all solutions of the equation $ c = f ( x _ {1} \dots x _ {n} ) $.
The solutions $ ( x _ {1} \dots x _ {n} ) $
must be found in $ E ^ {n} $.
A level set may prove to be empty. If a level set is a line or a surface, it is known as a level line or a level surface of the function.
A.A. Konyushkov
An extremely important theorem in functional analysis is the so-called closed-graph theorem: If $ X $
and $ Y $
are Fréchet spaces (cf. Fréchet space) and $ f : X \rightarrow Y $
is a linear mapping with a closed graph, then $ f $
is continuous. Many generalizations of this result are known (see [a1]).
References
[a1] | M. De Wilde, "Closed graph theorems and webbed spaces" , Pitman (1978) |
[a2] | H.H. Schaefer, "Topological vector spaces" , Macmillan (1966) |