Namespaces
Variants
Actions

Difference between revisions of "Generalized almost-periodic functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g0437601.png
 +
$#A+1 = 96 n = 0
 +
$#C+1 = 96 : ~/encyclopedia/old_files/data/G043/G.0403760 Generalized almost\AAhperiodic functions
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Classes of functions that are various generalizations of almost-periodic functions. Each of them generalizes some aspects of Bohr and Bochner almost-periodic functions (cf. [[Bohr almost-periodic functions|Bohr almost-periodic functions]]; [[Bochner almost-periodic functions|Bochner almost-periodic functions]]). The following mathematical concepts (structures) occur in the definitions of Bohr and Bochner almost-periodicity: 1) the space of continuous functions defined on the whole line, regarded as a metric space with metric (distance)
 
Classes of functions that are various generalizations of almost-periodic functions. Each of them generalizes some aspects of Bohr and Bochner almost-periodic functions (cf. [[Bohr almost-periodic functions|Bohr almost-periodic functions]]; [[Bochner almost-periodic functions|Bochner almost-periodic functions]]). The following mathematical concepts (structures) occur in the definitions of Bohr and Bochner almost-periodicity: 1) the space of continuous functions defined on the whole line, regarded as a metric space with metric (distance)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\rho \{ f , g \}  = \
 +
\sup _
 +
{x \in \mathbf R  ^ {1} } \
 +
| f ( x) - g ( x) | ;
 +
$$
  
2) a mapping of the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437602.png" /> into the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437603.png" /> (a function); 3) the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437604.png" /> as a group; and 4) the line as a topological space.
+
2) a mapping of the line $  \mathbf R  ^ {1} $
 +
into the complex plane $  \mathbf C  ^ {1} $(
 +
a function); 3) the line $  \mathbf R  ^ {1} $
 +
as a group; and 4) the line as a topological space.
  
 
The existing generalizations of almost-periodic functions can conveniently be classified according to these structures.
 
The existing generalizations of almost-periodic functions can conveniently be classified according to these structures.
  
1) If instead of continuity one requires the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437606.png" />, to be measurable with summable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437607.png" />-th power on each bounded interval, then one of the following three expressions can be taken for the distance:
+
1) If instead of continuity one requires the function $  f ( x) $,  
 +
$  x \in \mathbf R  ^ {1} $,  
 +
to be measurable with summable $  p $-
 +
th power on each bounded interval, then one of the following three expressions can be taken for the distance:
  
 
the Stepanov distance:
 
the Stepanov distance:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437608.png" /></td> </tr></table>
+
$$
 +
\rho _ {S _ {l}  ^ {p} } \{ f , g \}  = \
 +
\sup _ {x \in \mathbf R  ^ {1} } \
 +
\left \{
 +
 
 +
\frac{1}{l}
 +
\int\limits _ { x } ^ { x+ }  l
 +
| f ( x) - g ( x) |  ^ {p} \
 +
d x
 +
\right \}  ^ {1/p} ;
 +
$$
  
 
the Weyl distance:
 
the Weyl distance:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g0437609.png" /></td> </tr></table>
+
$$
 +
\rho _ {W  ^ {p}  } \{ f , g \}  = \
 +
\lim\limits _ {l \rightarrow \infty } \
 +
\rho _ {S _ {l}  ^ {p} } \{ f , g \} ;
 +
$$
  
 
the Besicovitch distance:
 
the Besicovitch distance:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376010.png" /></td> </tr></table>
+
$$
 +
\rho _ {B  ^ {p}  } \{ f , g \}  = \
 +
\left \{
 +
\overline{\lim\limits}\; _ {T \rightarrow \infty } \
 +
 
 +
\frac{1}{2T}
 +
\int\limits _ { - } T ^ { + }  T
 +
| f ( x) - g ( x) |  ^ {p}  d x
 +
\right \}  ^ {1/p} .
 +
$$
  
 
Corresponding to these distances one has the generalized Stepanov, Weyl and Besicovitch almost-periodic functions (cf. [[Stepanov almost-periodic functions|Stepanov almost-periodic functions]]; [[Besicovitch almost-periodic functions|Besicovitch almost-periodic functions]]; [[Weyl almost-periodic functions|Weyl almost-periodic functions]]).
 
Corresponding to these distances one has the generalized Stepanov, Weyl and Besicovitch almost-periodic functions (cf. [[Stepanov almost-periodic functions|Stepanov almost-periodic functions]]; [[Besicovitch almost-periodic functions|Besicovitch almost-periodic functions]]; [[Weyl almost-periodic functions|Weyl almost-periodic functions]]).
  
2) Suppose the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376011.png" /> is mapped not into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376012.png" />, but into a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376013.png" />. Such a mapping is called an abstract function. Suppose that the abstract functions are continuous and that the distance between them is defined by formula (*) with the modulus replaced by the norm. Then the definitions of Bohr and Bochner can be generalized and lead to the so-called abstract almost-periodic functions.
+
2) Suppose the line $  \mathbf R  ^ {1} $
 +
is mapped not into $  \mathbf C  ^ {1} $,  
 +
but into a Banach space $  B $.  
 +
Such a mapping is called an abstract function. Suppose that the abstract functions are continuous and that the distance between them is defined by formula (*) with the modulus replaced by the norm. Then the definitions of Bohr and Bochner can be generalized and lead to the so-called abstract almost-periodic functions.
  
A further generalization can be obtained by replacing the Banach space by a topological vector space. In this case for every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376014.png" /> of zero a real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376015.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376017.png" />-almost-period of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376018.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376019.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376020.png" />.
+
A further generalization can be obtained by replacing the Banach space by a topological vector space. In this case for every neighbourhood $  U $
 +
of zero a real number $  \tau = \tau _ {U} $
 +
is called an $  U $-
 +
almost-period of $  f $
 +
whenever $  f ( x + \tau ) - f ( x) \in U $
 +
for all $  x \in \mathbf R $.
  
If the norm-topology is replaced by the weak topology, then one obtains the so-called weak almost-periodic functions: A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376023.png" />, is called weakly almost-periodic if for any functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376025.png" /> is a numerical almost-periodic function.
+
If the norm-topology is replaced by the weak topology, then one obtains the so-called weak almost-periodic functions: A function $  f ( x) $,  
 +
$  x \in \mathbf R  ^ {1} $,  
 +
$  f \in B $,  
 +
is called weakly almost-periodic if for any functional $  \phi \in B  ^ {*} $,  
 +
$  \phi ( f ( x) ) $
 +
is a numerical almost-periodic function.
  
3) Suppose that instead of the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376026.png" /> one considers an arbitrary (not necessarily topological) group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376027.png" /> and a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376029.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376030.png" /> into a topological vector space (in particular, into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376031.png" />). As a definition of almost-periodic functions it is convenient to take Bochner's definition: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376032.png" /> is called an almost-periodic function on the group if the family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376034.png" /> (or, equivalently, the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376035.png" />), is conditionally compact with respect to uniform convergence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376036.png" /> (cf. [[Almost-periodic function on a group|Almost-periodic function on a group]]).
+
3) Suppose that instead of the line $  \mathbf R  ^ {1} $
 +
one considers an arbitrary (not necessarily topological) group $  G $
 +
and a mapping $  f ( x) $,  
 +
$  x \in G $,  
 +
of $  G $
 +
into a topological vector space (in particular, into $  \mathbf C  ^ {1} $).  
 +
As a definition of almost-periodic functions it is convenient to take Bochner's definition: $  f $
 +
is called an almost-periodic function on the group if the family of functions $  f ( x h ) $,  
 +
$  h \in G $(
 +
or, equivalently, the family $  f ( h x ) $),  
 +
is conditionally compact with respect to uniform convergence on $  G $(
 +
cf. [[Almost-periodic function on a group|Almost-periodic function on a group]]).
  
4) In the definition of almost-periodic functions on a group, the important thing is not the group operation itself, but the displacement operator on functions: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376037.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376038.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376039.png" />. Hence a further generalization of almost-periodic functions is obtained by generalizing the displacement operator. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376040.png" /> be an abstract space (not necessarily a group) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376042.png" />, be a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376043.png" />. Linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376045.png" />, are called [[Generalized displacement operators|generalized displacement operators]] if the following axioms are satisfied:
+
4) In the definition of almost-periodic functions on a group, the important thing is not the group operation itself, but the displacement operator on functions: $  T  ^ {h} f ( x) = f ( x h ) $(
 +
or $  f ( h x ) $),  
 +
$  x , h \in G $.  
 +
Hence a further generalization of almost-periodic functions is obtained by generalizing the displacement operator. Let $  \Omega $
 +
be an abstract space (not necessarily a group) and let $  f ( x) $,  
 +
$  x \in \Omega $,  
 +
be a function defined on $  \Omega $.  
 +
Linear operators $  T  ^ {h} $,  
 +
$  h \in \Omega $,  
 +
are called [[Generalized displacement operators|generalized displacement operators]] if the following axioms are satisfied:
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376046.png" />) associativity: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376047.png" />;
+
$  \alpha $)
 +
associativity: $  T _ {h}  ^ {g} T _ {x}  ^ {h} f ( x) = T _ {x}  ^ {h} T _ {x}  ^ {g} f ( x) $;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376048.png" />) the existence of a neutral element, that is, an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376050.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376051.png" /> is the identity operator.
+
$  \beta $)  
 +
the existence of a neutral element, that is, an element $  h _ {0} \in \Omega $
 +
such that $  T ^ {h _ {0} } = I $,  
 +
where $  I $
 +
is the identity operator.
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376053.png" />, is called almost-periodic relative to the family of generalized displacement operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376054.png" /> if the family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376055.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376056.png" /> a parameter) is conditionally compact with respect to uniform convergence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376057.png" />. It must be noted that the theory of such functions is still poorly developed, even relative to specific families of generalized displacement operators (see [[#References|[1]]], [[#References|[5]]]).
+
A function $  f ( x) $,  
 +
$  x \in \Omega $,  
 +
is called almost-periodic relative to the family of generalized displacement operators $  T  ^ {h} $
 +
if the family of functions $  T  ^ {h} f ( x) $(
 +
$  h $
 +
a parameter) is conditionally compact with respect to uniform convergence on $  \Omega $.  
 +
It must be noted that the theory of such functions is still poorly developed, even relative to specific families of generalized displacement operators (see [[#References|[1]]], [[#References|[5]]]).
  
5) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376058.png" /> be a finite or countable set of real numbers. Suppose that the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376059.png" /> is made into a topological vector space by defining a neighbourhood of the origin as a set of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376060.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376062.png" /> (the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376064.png" /> are chosen arbitrarily and determine the neighbourhood). It turns out that the Bohr almost-periodic functions coincide with the functions that are uniformly continuous in this topology (for the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376065.png" /> one may take the Fourier indices of the function or an integral basis of them). Functions that are continuous in this topology provide another generalization of almost-periodic functions. These are the so-called Levitan <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376067.png" />-almost-periodic functions. The definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376068.png" />-almost-periodic functions can be carried over in an obvious way to functions defined on an Abelian group (and, less obviously, to non-commutative groups).
+
5) Let $  \lambda _ {1} \dots \lambda _ {n} \dots $
 +
be a finite or countable set of real numbers. Suppose that the line $  \mathbf R  ^ {1} $
 +
is made into a topological vector space by defining a neighbourhood of the origin as a set of real numbers $  x $
 +
satisfying $  | e ^ {i \lambda _ {n} x } - 1 | < \epsilon $,  
 +
$  n = 1 \dots N $(
 +
the numbers $  \epsilon $
 +
and $  N $
 +
are chosen arbitrarily and determine the neighbourhood). It turns out that the Bohr almost-periodic functions coincide with the functions that are uniformly continuous in this topology (for the numbers $  \{ \lambda _ {k} \} $
 +
one may take the Fourier indices of the function or an integral basis of them). Functions that are continuous in this topology provide another generalization of almost-periodic functions. These are the so-called Levitan $  N $-
 +
almost-periodic functions. The definition of $  N $-
 +
almost-periodic functions can be carried over in an obvious way to functions defined on an Abelian group (and, less obviously, to non-commutative groups).
  
The so-called asymptotic almost-periodic functions introduced by M. Fréchet (see [[#References|[9]]], [[#References|[10]]]) in connection with certain problems of ergodic theory do not fit particularly well into the above classification of generalized almost-periodic functions. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376069.png" /> is called an asymptotic almost-periodic function if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376070.png" /> and every arbitrary sequence of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376071.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376072.png" />, there exists a subsequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376073.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376074.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376075.png" /> converges uniformly for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376076.png" />.
+
The so-called asymptotic almost-periodic functions introduced by M. Fréchet (see [[#References|[9]]], [[#References|[10]]]) in connection with certain problems of ergodic theory do not fit particularly well into the above classification of generalized almost-periodic functions. A function $  f : \mathbf R  ^ {1} \rightarrow \mathbf C  ^ {1} $
 +
is called an asymptotic almost-periodic function if for every $  \alpha \in \mathbf R  ^ {1} $
 +
and every arbitrary sequence of real numbers $  \{ h _ {n} \} $,  
 +
with $  h _ {n} \rightarrow \infty $,  
 +
there exists a subsequence $  \{ k _ {n} ^ {( \alpha ) } \} $
 +
of $  \{ h _ {n} \} $
 +
for which $  f ( x + k _ {n} ^ {( \alpha ) } ) $
 +
converges uniformly for all $  x > \alpha $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.M. Levitan,  "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Amerio,  G. Prouse,  "Almost-periodic functions and functional equations" , v. Nostrand-Reinhold  (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Bochner,  "Abstrakte fastperiodische Funktionen"  ''Acta Math.'' , '''61'''  (1933)  pp. 149–184</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.A. Marchenko,  "Some questions in the theory of one-dimensional linear second-order differential operators"  ''Trudy Moskov. Mat. Obshch.'' , '''2'''  (1953)  pp. 3–83  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.Ya. Levin,  "On the almost-periodic functions of Levitan"  ''Ukrain. Mat. Zh.'' , '''1'''  (1949)  pp. 49–101  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.S. Besicovitch,  H. Bohr,  "Almost periodicity and general trigonometric series"  ''Acta Math.'' , '''57'''  (1931)  pp. 203–292</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  B.M. Levitan,  V.V. Zhikov,  "Almost-periodic functions and differential equations" , Cambridge Univ. Press  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M. Fréchet,  "Les fonctions asymptotiquement presque-périodiques continues"  ''C.R. Acad. Sci. Paris'' , '''213'''  (1941)  pp. 520–522</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  M. Fréchet,  "Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique I"  ''Proc. Roy. Soc. Edinburgh Sect. A'' , '''63'''  (1950)  pp. 61–68</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.M. Levitan,  "Almost-periodic functions" , Moscow  (1953)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Amerio,  G. Prouse,  "Almost-periodic functions and functional equations" , v. Nostrand-Reinhold  (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Bochner,  "Abstrakte fastperiodische Funktionen"  ''Acta Math.'' , '''61'''  (1933)  pp. 149–184</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  V.A. Marchenko,  "Some questions in the theory of one-dimensional linear second-order differential operators"  ''Trudy Moskov. Mat. Obshch.'' , '''2'''  (1953)  pp. 3–83  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  B.Ya. Levin,  "On the almost-periodic functions of Levitan"  ''Ukrain. Mat. Zh.'' , '''1'''  (1949)  pp. 49–101  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.S. Besicovitch,  H. Bohr,  "Almost periodicity and general trigonometric series"  ''Acta Math.'' , '''57'''  (1931)  pp. 203–292</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  B.M. Levitan,  V.V. Zhikov,  "Almost-periodic functions and differential equations" , Cambridge Univ. Press  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M. Fréchet,  "Les fonctions asymptotiquement presque-périodiques continues"  ''C.R. Acad. Sci. Paris'' , '''213'''  (1941)  pp. 520–522</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  M. Fréchet,  "Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique I"  ''Proc. Roy. Soc. Edinburgh Sect. A'' , '''63'''  (1950)  pp. 61–68</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
More about this topic can be found in the articles [[Almost-periodic function|Almost-periodic function]] and [[Almost-periodic function on a group|Almost-periodic function on a group]].
 
More about this topic can be found in the articles [[Almost-periodic function|Almost-periodic function]] and [[Almost-periodic function on a group|Almost-periodic function on a group]].
  
In addition to the notion of weak almost-periodicity as defined above, there is another one which applies to complex-valued functions on a topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376077.png" /> (but can easily be generalized to functions with values in an arbitrary Banach space): A bounded continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376078.png" /> is called weakly almost-periodic whenever the family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376080.png" />, is conditionally compact with respect to the weak topology in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376081.png" /> of all bounded continuous functions from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376082.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376083.png" />. See [[#References|[a3]]], [[#References|[a1]]] and [[#References|[a2]]]. In [[#References|[a6]]] it is shown that these definitions are not equivalent for vector-valued functions.
+
In addition to the notion of weak almost-periodicity as defined above, there is another one which applies to complex-valued functions on a topological group $  G $(
 +
but can easily be generalized to functions with values in an arbitrary Banach space): A bounded continuous function $  f: G \rightarrow \mathbf C $
 +
is called weakly almost-periodic whenever the family of functions $  x \mapsto f ( xh) $,  
 +
$  h \in G $,  
 +
is conditionally compact with respect to the weak topology in the space $  C ( G, \mathbf C ) $
 +
of all bounded continuous functions from $  G $
 +
to $  \mathbf C $.  
 +
See [[#References|[a3]]], [[#References|[a1]]] and [[#References|[a2]]]. In [[#References|[a6]]] it is shown that these definitions are not equivalent for vector-valued functions.
  
For almost-periodicity with respect to (specific) families of generalized displacement operators, see [[#References|[a5]]]. (In the above definition the sub-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376084.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376085.png" /> denotes that the generalized displacement operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376086.png" /> is applied to a function of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376087.png" />. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376088.png" /> is obtained by applying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376089.png" /> to the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376090.png" />.) Of the same flavour is the notion of an almost-periodic function on a transformation group: If a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376091.png" /> acts continuously on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376092.png" />, then a bounded continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376093.png" /> is said to be (weakly) almost-periodic on the transformation group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376094.png" /> whenever the family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376096.png" />, is conditionally compact with respect to the uniform (respectively, weak) topology in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376097.png" />. See e.g. [[#References|[a4]]].
+
For almost-periodicity with respect to (specific) families of generalized displacement operators, see [[#References|[a5]]]. (In the above definition the sub-index $  x $
 +
in $  T _ {x}  ^ {g} $
 +
denotes that the generalized displacement operator $  T  ^ {g} $
 +
is applied to a function of the variable $  x $.  
 +
Thus, $  T _ {h}  ^ {g} T _ {x}  ^ {h} f ( x) $
 +
is obtained by applying $  T  ^ {g} $
 +
to the function $  h \mapsto ( T  ^ {h} f  ) ( x) $.)  
 +
Of the same flavour is the notion of an almost-periodic function on a transformation group: If a group $  G $
 +
acts continuously on a space $  X $,  
 +
then a bounded continuous function $  f: X \rightarrow \mathbf C $
 +
is said to be (weakly) almost-periodic on the transformation group $  ( G, X) $
 +
whenever the family of functions $  x \mapsto f ( tx) $,  
 +
$  t \in G $,  
 +
is conditionally compact with respect to the uniform (respectively, weak) topology in the space $  C ( X, G) $.  
 +
See e.g. [[#References|[a4]]].
  
More about Levitan <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043760/g04376099.png" />-almost-periodic functions can be found in [[#References|[8]]] and [[#References|[a7]]].
+
More about Levitan $  N $-
 +
almost-periodic functions can be found in [[#References|[8]]] and [[#References|[a7]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.B. Burckel,  "Weakly almost-periodic functions on semigroups" , Gordon &amp; Breach  (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.S. de Leeuw,  I. Glicksberg,  "Almost periodic functions on semigroups"  ''Acta Math.'' , '''105'''  (1961)  pp. 99–140</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.F. Eberlein,  "Abstract ergodic theorems and weak almost periodic functions"  ''Trans. Amer. Math. Soc.'' , '''67'''  (1949)  pp. 217–240</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.B. Landstadt,  "On the Bohr compactification of a transformation group"  ''Math. Z.'' , '''127'''  (1972)  pp. 167–178</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.M. Levitan,  "The application of generalized displacement operators to linear differential equations of the second order"  ''Transl. Amer. Math. Soc. (1)'' , '''10'''  (1950)  pp. 408–451  ''Uspekhi Math. Nauk'' , '''4''' :  1(29)  (1949)  pp. 3–112</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Milnes,  "On vector-valued weakly almost periodic functions"  ''J. London Math. Soc. (2)'' , '''22'''  (1980)  pp. 467–472</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Reich,  "Präkompakte Gruppen und Fastperiodicität"  ''Math. Z.'' , '''116'''  (1970)  pp. 216–234</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.B. Burckel,  "Weakly almost-periodic functions on semigroups" , Gordon &amp; Breach  (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K.S. de Leeuw,  I. Glicksberg,  "Almost periodic functions on semigroups"  ''Acta Math.'' , '''105'''  (1961)  pp. 99–140</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.F. Eberlein,  "Abstract ergodic theorems and weak almost periodic functions"  ''Trans. Amer. Math. Soc.'' , '''67'''  (1949)  pp. 217–240</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.B. Landstadt,  "On the Bohr compactification of a transformation group"  ''Math. Z.'' , '''127'''  (1972)  pp. 167–178</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B.M. Levitan,  "The application of generalized displacement operators to linear differential equations of the second order"  ''Transl. Amer. Math. Soc. (1)'' , '''10'''  (1950)  pp. 408–451  ''Uspekhi Math. Nauk'' , '''4''' :  1(29)  (1949)  pp. 3–112</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P. Milnes,  "On vector-valued weakly almost periodic functions"  ''J. London Math. Soc. (2)'' , '''22'''  (1980)  pp. 467–472</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  A. Reich,  "Präkompakte Gruppen und Fastperiodicität"  ''Math. Z.'' , '''116'''  (1970)  pp. 216–234</TD></TR></table>

Latest revision as of 19:41, 5 June 2020


Classes of functions that are various generalizations of almost-periodic functions. Each of them generalizes some aspects of Bohr and Bochner almost-periodic functions (cf. Bohr almost-periodic functions; Bochner almost-periodic functions). The following mathematical concepts (structures) occur in the definitions of Bohr and Bochner almost-periodicity: 1) the space of continuous functions defined on the whole line, regarded as a metric space with metric (distance)

$$ \tag{* } \rho \{ f , g \} = \ \sup _ {x \in \mathbf R ^ {1} } \ | f ( x) - g ( x) | ; $$

2) a mapping of the line $ \mathbf R ^ {1} $ into the complex plane $ \mathbf C ^ {1} $( a function); 3) the line $ \mathbf R ^ {1} $ as a group; and 4) the line as a topological space.

The existing generalizations of almost-periodic functions can conveniently be classified according to these structures.

1) If instead of continuity one requires the function $ f ( x) $, $ x \in \mathbf R ^ {1} $, to be measurable with summable $ p $- th power on each bounded interval, then one of the following three expressions can be taken for the distance:

the Stepanov distance:

$$ \rho _ {S _ {l} ^ {p} } \{ f , g \} = \ \sup _ {x \in \mathbf R ^ {1} } \ \left \{ \frac{1}{l} \int\limits _ { x } ^ { x+ } l | f ( x) - g ( x) | ^ {p} \ d x \right \} ^ {1/p} ; $$

the Weyl distance:

$$ \rho _ {W ^ {p} } \{ f , g \} = \ \lim\limits _ {l \rightarrow \infty } \ \rho _ {S _ {l} ^ {p} } \{ f , g \} ; $$

the Besicovitch distance:

$$ \rho _ {B ^ {p} } \{ f , g \} = \ \left \{ \overline{\lim\limits}\; _ {T \rightarrow \infty } \ \frac{1}{2T} \int\limits _ { - } T ^ { + } T | f ( x) - g ( x) | ^ {p} d x \right \} ^ {1/p} . $$

Corresponding to these distances one has the generalized Stepanov, Weyl and Besicovitch almost-periodic functions (cf. Stepanov almost-periodic functions; Besicovitch almost-periodic functions; Weyl almost-periodic functions).

2) Suppose the line $ \mathbf R ^ {1} $ is mapped not into $ \mathbf C ^ {1} $, but into a Banach space $ B $. Such a mapping is called an abstract function. Suppose that the abstract functions are continuous and that the distance between them is defined by formula (*) with the modulus replaced by the norm. Then the definitions of Bohr and Bochner can be generalized and lead to the so-called abstract almost-periodic functions.

A further generalization can be obtained by replacing the Banach space by a topological vector space. In this case for every neighbourhood $ U $ of zero a real number $ \tau = \tau _ {U} $ is called an $ U $- almost-period of $ f $ whenever $ f ( x + \tau ) - f ( x) \in U $ for all $ x \in \mathbf R $.

If the norm-topology is replaced by the weak topology, then one obtains the so-called weak almost-periodic functions: A function $ f ( x) $, $ x \in \mathbf R ^ {1} $, $ f \in B $, is called weakly almost-periodic if for any functional $ \phi \in B ^ {*} $, $ \phi ( f ( x) ) $ is a numerical almost-periodic function.

3) Suppose that instead of the line $ \mathbf R ^ {1} $ one considers an arbitrary (not necessarily topological) group $ G $ and a mapping $ f ( x) $, $ x \in G $, of $ G $ into a topological vector space (in particular, into $ \mathbf C ^ {1} $). As a definition of almost-periodic functions it is convenient to take Bochner's definition: $ f $ is called an almost-periodic function on the group if the family of functions $ f ( x h ) $, $ h \in G $( or, equivalently, the family $ f ( h x ) $), is conditionally compact with respect to uniform convergence on $ G $( cf. Almost-periodic function on a group).

4) In the definition of almost-periodic functions on a group, the important thing is not the group operation itself, but the displacement operator on functions: $ T ^ {h} f ( x) = f ( x h ) $( or $ f ( h x ) $), $ x , h \in G $. Hence a further generalization of almost-periodic functions is obtained by generalizing the displacement operator. Let $ \Omega $ be an abstract space (not necessarily a group) and let $ f ( x) $, $ x \in \Omega $, be a function defined on $ \Omega $. Linear operators $ T ^ {h} $, $ h \in \Omega $, are called generalized displacement operators if the following axioms are satisfied:

$ \alpha $) associativity: $ T _ {h} ^ {g} T _ {x} ^ {h} f ( x) = T _ {x} ^ {h} T _ {x} ^ {g} f ( x) $;

$ \beta $) the existence of a neutral element, that is, an element $ h _ {0} \in \Omega $ such that $ T ^ {h _ {0} } = I $, where $ I $ is the identity operator.

A function $ f ( x) $, $ x \in \Omega $, is called almost-periodic relative to the family of generalized displacement operators $ T ^ {h} $ if the family of functions $ T ^ {h} f ( x) $( $ h $ a parameter) is conditionally compact with respect to uniform convergence on $ \Omega $. It must be noted that the theory of such functions is still poorly developed, even relative to specific families of generalized displacement operators (see [1], [5]).

5) Let $ \lambda _ {1} \dots \lambda _ {n} \dots $ be a finite or countable set of real numbers. Suppose that the line $ \mathbf R ^ {1} $ is made into a topological vector space by defining a neighbourhood of the origin as a set of real numbers $ x $ satisfying $ | e ^ {i \lambda _ {n} x } - 1 | < \epsilon $, $ n = 1 \dots N $( the numbers $ \epsilon $ and $ N $ are chosen arbitrarily and determine the neighbourhood). It turns out that the Bohr almost-periodic functions coincide with the functions that are uniformly continuous in this topology (for the numbers $ \{ \lambda _ {k} \} $ one may take the Fourier indices of the function or an integral basis of them). Functions that are continuous in this topology provide another generalization of almost-periodic functions. These are the so-called Levitan $ N $- almost-periodic functions. The definition of $ N $- almost-periodic functions can be carried over in an obvious way to functions defined on an Abelian group (and, less obviously, to non-commutative groups).

The so-called asymptotic almost-periodic functions introduced by M. Fréchet (see [9], [10]) in connection with certain problems of ergodic theory do not fit particularly well into the above classification of generalized almost-periodic functions. A function $ f : \mathbf R ^ {1} \rightarrow \mathbf C ^ {1} $ is called an asymptotic almost-periodic function if for every $ \alpha \in \mathbf R ^ {1} $ and every arbitrary sequence of real numbers $ \{ h _ {n} \} $, with $ h _ {n} \rightarrow \infty $, there exists a subsequence $ \{ k _ {n} ^ {( \alpha ) } \} $ of $ \{ h _ {n} \} $ for which $ f ( x + k _ {n} ^ {( \alpha ) } ) $ converges uniformly for all $ x > \alpha $.

References

[1] B.M. Levitan, "Almost-periodic functions" , Moscow (1953) (In Russian)
[2] A.S. Besicovitch, "Almost periodic functions" , Cambridge Univ. Press (1932)
[3] L. Amerio, G. Prouse, "Almost-periodic functions and functional equations" , v. Nostrand-Reinhold (1971)
[4] S. Bochner, "Abstrakte fastperiodische Funktionen" Acta Math. , 61 (1933) pp. 149–184
[5] V.A. Marchenko, "Some questions in the theory of one-dimensional linear second-order differential operators" Trudy Moskov. Mat. Obshch. , 2 (1953) pp. 3–83 (In Russian)
[6] B.Ya. Levin, "On the almost-periodic functions of Levitan" Ukrain. Mat. Zh. , 1 (1949) pp. 49–101 (In Russian)
[7] A.S. Besicovitch, H. Bohr, "Almost periodicity and general trigonometric series" Acta Math. , 57 (1931) pp. 203–292
[8] B.M. Levitan, V.V. Zhikov, "Almost-periodic functions and differential equations" , Cambridge Univ. Press (1982) (Translated from Russian)
[9] M. Fréchet, "Les fonctions asymptotiquement presque-périodiques continues" C.R. Acad. Sci. Paris , 213 (1941) pp. 520–522
[10] M. Fréchet, "Les transformations asymptotiquement presque périodiques discontinues et le lemme ergodique I" Proc. Roy. Soc. Edinburgh Sect. A , 63 (1950) pp. 61–68

Comments

More about this topic can be found in the articles Almost-periodic function and Almost-periodic function on a group.

In addition to the notion of weak almost-periodicity as defined above, there is another one which applies to complex-valued functions on a topological group $ G $( but can easily be generalized to functions with values in an arbitrary Banach space): A bounded continuous function $ f: G \rightarrow \mathbf C $ is called weakly almost-periodic whenever the family of functions $ x \mapsto f ( xh) $, $ h \in G $, is conditionally compact with respect to the weak topology in the space $ C ( G, \mathbf C ) $ of all bounded continuous functions from $ G $ to $ \mathbf C $. See [a3], [a1] and [a2]. In [a6] it is shown that these definitions are not equivalent for vector-valued functions.

For almost-periodicity with respect to (specific) families of generalized displacement operators, see [a5]. (In the above definition the sub-index $ x $ in $ T _ {x} ^ {g} $ denotes that the generalized displacement operator $ T ^ {g} $ is applied to a function of the variable $ x $. Thus, $ T _ {h} ^ {g} T _ {x} ^ {h} f ( x) $ is obtained by applying $ T ^ {g} $ to the function $ h \mapsto ( T ^ {h} f ) ( x) $.) Of the same flavour is the notion of an almost-periodic function on a transformation group: If a group $ G $ acts continuously on a space $ X $, then a bounded continuous function $ f: X \rightarrow \mathbf C $ is said to be (weakly) almost-periodic on the transformation group $ ( G, X) $ whenever the family of functions $ x \mapsto f ( tx) $, $ t \in G $, is conditionally compact with respect to the uniform (respectively, weak) topology in the space $ C ( X, G) $. See e.g. [a4].

More about Levitan $ N $- almost-periodic functions can be found in [8] and [a7].

References

[a1] R.B. Burckel, "Weakly almost-periodic functions on semigroups" , Gordon & Breach (1970)
[a2] K.S. de Leeuw, I. Glicksberg, "Almost periodic functions on semigroups" Acta Math. , 105 (1961) pp. 99–140
[a3] W.F. Eberlein, "Abstract ergodic theorems and weak almost periodic functions" Trans. Amer. Math. Soc. , 67 (1949) pp. 217–240
[a4] M.B. Landstadt, "On the Bohr compactification of a transformation group" Math. Z. , 127 (1972) pp. 167–178
[a5] B.M. Levitan, "The application of generalized displacement operators to linear differential equations of the second order" Transl. Amer. Math. Soc. (1) , 10 (1950) pp. 408–451 Uspekhi Math. Nauk , 4 : 1(29) (1949) pp. 3–112
[a6] P. Milnes, "On vector-valued weakly almost periodic functions" J. London Math. Soc. (2) , 22 (1980) pp. 467–472
[a7] A. Reich, "Präkompakte Gruppen und Fastperiodicität" Math. Z. , 116 (1970) pp. 216–234
How to Cite This Entry:
Generalized almost-periodic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generalized_almost-periodic_functions&oldid=47067
This article was adapted from an original article by B.M. Levitan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article