Namespaces
Variants
Actions

Difference between revisions of "Formal product of trigonometric series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
'' <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408801.png" /></td> </tr></table>
+
<!--
 +
f0408801.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/F040/F.0400880 Formal product of trigonometric series
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''  $$
 +
\sum _ {n = - \infty } ^  \infty  c _ {n} e  ^ {inx} \ \
 +
\textrm{ and } \ \
 +
\sum _ {n = - \infty } ^  \infty  \gamma _ {n} e  ^ {inx}
 +
$$
  
 
''
 
''
Line 5: Line 21:
 
The series
 
The series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408802.png" /></td> </tr></table>
+
$$
 +
\sum _ {n = - \infty } ^  \infty  K _ {n} e  ^ {inx} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408803.png" /></td> </tr></table>
+
$$
 +
K _ {n}  = \
 +
\sum _ {m = - \infty } ^  \infty  c _ {m} \gamma _ {n - m }  .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408804.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408806.png" />, and if
+
If $  c _ {n} \rightarrow 0 $
 +
as $  | n | \rightarrow \infty $,
 +
$  \sum _ {n = - \infty }  ^  \infty  | n \gamma _ {n} | < \infty $,  
 +
and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408807.png" /></td> </tr></table>
+
$$
 +
\sum _ {n = - \infty } ^  \infty 
 +
\gamma _ {n} e  ^ {inx}
 +
$$
  
has sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408808.png" />, then the series
+
has sum $  \lambda ( x) $,  
 +
then the series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f0408809.png" /></td> </tr></table>
+
$$
 +
\sum _ {n = - \infty } ^  \infty 
 +
( K _ {n} - \lambda ( x) c _ {n} ) e  ^ {inx}
 +
$$
  
has sum zero uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f04088010.png" />. The condition
+
has sum zero uniformly on $  [- \pi , \pi ] $.  
 +
The condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f04088011.png" /></td> </tr></table>
+
$$
 +
\sum _ {n = - \infty } ^  \infty  | n \gamma _ {n} |  < \infty
 +
$$
  
 
is satisfied if, for example,
 
is satisfied if, for example,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f04088012.png" /></td> </tr></table>
+
$$
 +
\sum _ {n = - \infty } ^  \infty  \gamma _ {n} e  ^ {inx}
 +
$$
  
is the Fourier series of a three-times differentiable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040880/f04088013.png" />.
+
is the Fourier series of a three-times differentiable function $  \lambda ( x) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>

Latest revision as of 19:39, 5 June 2020


$$ \sum _ {n = - \infty } ^ \infty c _ {n} e ^ {inx} \ \ \textrm{ and } \ \ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

The series

$$ \sum _ {n = - \infty } ^ \infty K _ {n} e ^ {inx} , $$

where

$$ K _ {n} = \ \sum _ {m = - \infty } ^ \infty c _ {m} \gamma _ {n - m } . $$

If $ c _ {n} \rightarrow 0 $ as $ | n | \rightarrow \infty $, $ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $, and if

$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

has sum $ \lambda ( x) $, then the series

$$ \sum _ {n = - \infty } ^ \infty ( K _ {n} - \lambda ( x) c _ {n} ) e ^ {inx} $$

has sum zero uniformly on $ [- \pi , \pi ] $. The condition

$$ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $$

is satisfied if, for example,

$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$

is the Fourier series of a three-times differentiable function $ \lambda ( x) $.

References

[1] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[2] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Formal product of trigonometric series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_product_of_trigonometric_series&oldid=46956
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article