Difference between revisions of "Formal product of trigonometric series"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0408801.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/F040/F.0400880 Formal product of trigonometric series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | '' $$ | ||
+ | \sum _ {n = - \infty } ^ \infty c _ {n} e ^ {inx} \ \ | ||
+ | \textrm{ and } \ \ | ||
+ | \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} | ||
+ | $$ | ||
'' | '' | ||
Line 5: | Line 21: | ||
The series | The series | ||
− | + | $$ | |
+ | \sum _ {n = - \infty } ^ \infty K _ {n} e ^ {inx} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | K _ {n} = \ | ||
+ | \sum _ {m = - \infty } ^ \infty c _ {m} \gamma _ {n - m } . | ||
+ | $$ | ||
− | If | + | If $ c _ {n} \rightarrow 0 $ |
+ | as $ | n | \rightarrow \infty $, | ||
+ | $ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $, | ||
+ | and if | ||
− | + | $$ | |
+ | \sum _ {n = - \infty } ^ \infty | ||
+ | \gamma _ {n} e ^ {inx} | ||
+ | $$ | ||
− | has sum | + | has sum $ \lambda ( x) $, |
+ | then the series | ||
− | + | $$ | |
+ | \sum _ {n = - \infty } ^ \infty | ||
+ | ( K _ {n} - \lambda ( x) c _ {n} ) e ^ {inx} | ||
+ | $$ | ||
− | has sum zero uniformly on | + | has sum zero uniformly on $ [- \pi , \pi ] $. |
+ | The condition | ||
− | + | $$ | |
+ | \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty | ||
+ | $$ | ||
is satisfied if, for example, | is satisfied if, for example, | ||
− | + | $$ | |
+ | \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} | ||
+ | $$ | ||
− | is the Fourier series of a three-times differentiable function | + | is the Fourier series of a three-times differentiable function $ \lambda ( x) $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
$$
\sum _ {n = - \infty } ^ \infty c _ {n} e ^ {inx} \ \
\textrm{ and } \ \
\sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx}
$$
The series
$$ \sum _ {n = - \infty } ^ \infty K _ {n} e ^ {inx} , $$
where
$$ K _ {n} = \ \sum _ {m = - \infty } ^ \infty c _ {m} \gamma _ {n - m } . $$
If $ c _ {n} \rightarrow 0 $ as $ | n | \rightarrow \infty $, $ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $, and if
$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$
has sum $ \lambda ( x) $, then the series
$$ \sum _ {n = - \infty } ^ \infty ( K _ {n} - \lambda ( x) c _ {n} ) e ^ {inx} $$
has sum zero uniformly on $ [- \pi , \pi ] $. The condition
$$ \sum _ {n = - \infty } ^ \infty | n \gamma _ {n} | < \infty $$
is satisfied if, for example,
$$ \sum _ {n = - \infty } ^ \infty \gamma _ {n} e ^ {inx} $$
is the Fourier series of a three-times differentiable function $ \lambda ( x) $.
References
[1] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Formal product of trigonometric series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_product_of_trigonometric_series&oldid=46956