Difference between revisions of "Flat module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0405901.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/F040/F.0400590 Flat module | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A left (or right) module $ M $ | ||
+ | over an associative ring $ R $ | ||
+ | such that the tensor-product functor $ \otimes _ {R} M $( | ||
+ | correspondingly, $ M \otimes _ {R} $) | ||
+ | is exact. This definition is equivalent to any of the following: 1) the functor $ \mathop{\rm Tor} _ {1} ^ {R} (-, M) = 0 $( | ||
+ | correspondingly, $ \mathop{\rm Tor} _ {1} ^ {R} ( M, -) = 0 $); | ||
+ | 2) the module $ M $ | ||
+ | can be represented in the form of a direct (injective) limit of summands of free modules; 3) the character module $ M ^ {*} = \mathop{\rm Hom} _ {\mathbf Z } ( M, \mathbf Q / \mathbf Z ) $ | ||
+ | is injective, where $ \mathbf Q $ | ||
+ | is the group of rational numbers and $ \mathbf Z $ | ||
+ | is the group of integers; and 4) for any right (correspondingly, left) ideal $ J $ | ||
+ | of $ R $, | ||
+ | the canonical homomorphism | ||
+ | |||
+ | $$ | ||
+ | J \otimes _ {R} M \rightarrow JM \ \ | ||
+ | ( M\otimes _ {R} J \rightarrow MJ) | ||
+ | $$ | ||
is an isomorphism. | is an isomorphism. | ||
− | Projective modules and free modules are examples of flat modules (cf. [[Projective module|Projective module]]; [[Free module|Free module]]). The class of flat modules over the ring of integers coincides with the class of Abelian groups without torsion. All modules over a ring | + | Projective modules and free modules are examples of flat modules (cf. [[Projective module|Projective module]]; [[Free module|Free module]]). The class of flat modules over the ring of integers coincides with the class of Abelian groups without torsion. All modules over a ring $ R $ |
+ | are flat modules if and only if $ R $ | ||
+ | is regular in the sense of von Neumann (see [[Absolutely-flat ring|Absolutely-flat ring]]). A coherent ring $ R $ | ||
+ | can be defined as a ring over which the direct product $ \prod R _ \alpha $ | ||
+ | of any number of copies of $ R $ | ||
+ | is a flat module. The operations of localization and completion with respect to powers of an ideal of a ring $ R $ | ||
+ | lead to flat modules over the ring (see [[Adic topology|Adic topology]]). The classical ring of fractions of a ring $ R $ | ||
+ | is a flat module over $ R $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Lambek, "Lectures on rings and modules" , Blaisdell (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Lambek, "Lectures on rings and modules" , Blaisdell (1966)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Commutative algebra" , Addison-Wesley (1964) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Commutative algebra" , Addison-Wesley (1964) (Translated from French)</TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
A left (or right) module $ M $
over an associative ring $ R $
such that the tensor-product functor $ \otimes _ {R} M $(
correspondingly, $ M \otimes _ {R} $)
is exact. This definition is equivalent to any of the following: 1) the functor $ \mathop{\rm Tor} _ {1} ^ {R} (-, M) = 0 $(
correspondingly, $ \mathop{\rm Tor} _ {1} ^ {R} ( M, -) = 0 $);
2) the module $ M $
can be represented in the form of a direct (injective) limit of summands of free modules; 3) the character module $ M ^ {*} = \mathop{\rm Hom} _ {\mathbf Z } ( M, \mathbf Q / \mathbf Z ) $
is injective, where $ \mathbf Q $
is the group of rational numbers and $ \mathbf Z $
is the group of integers; and 4) for any right (correspondingly, left) ideal $ J $
of $ R $,
the canonical homomorphism
$$ J \otimes _ {R} M \rightarrow JM \ \ ( M\otimes _ {R} J \rightarrow MJ) $$
is an isomorphism.
Projective modules and free modules are examples of flat modules (cf. Projective module; Free module). The class of flat modules over the ring of integers coincides with the class of Abelian groups without torsion. All modules over a ring $ R $ are flat modules if and only if $ R $ is regular in the sense of von Neumann (see Absolutely-flat ring). A coherent ring $ R $ can be defined as a ring over which the direct product $ \prod R _ \alpha $ of any number of copies of $ R $ is a flat module. The operations of localization and completion with respect to powers of an ideal of a ring $ R $ lead to flat modules over the ring (see Adic topology). The classical ring of fractions of a ring $ R $ is a flat module over $ R $.
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[2] | J. Lambek, "Lectures on rings and modules" , Blaisdell (1966) |
Comments
References
[a1] | N. Bourbaki, "Commutative algebra" , Addison-Wesley (1964) (Translated from French) |
Flat module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Flat_module&oldid=46941