Namespaces
Variants
Actions

Difference between revisions of "Exact endomorphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a Lebesgue space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367301.png" />''
+
<!--
 +
e0367301.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/E036/E.0306730 Exact endomorphism
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
An endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367302.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367303.png" /> (cf. [[Metric isomorphism|Metric isomorphism]]) such that the only [[Measurable decomposition|measurable decomposition]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367304.png" /> that is coarser <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367305.png" /> than all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367306.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367307.png" /> is the decomposition into points, is the trivial decomposition with as only element all of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367308.png" />. An equivalent definition is: There is no measurable decomposition that is invariant (in older terminology — totally invariant) under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e0367309.png" /> (i.e. is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673010.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673011.png" />). Examples of such endomorphisms are a one-sided Bernoulli shift and an [[Expanding mapping|expanding mapping]].
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Exact endomorphisms have strong ergodic properties analogous to those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673012.png" />-systems (to which they are related: there is a construction associating an automorphism to some endomorphism — its natural extension; for an exact endomorphism the latter is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673013.png" />-automorphism). Cf. [[K-system(2)|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673014.png" />-system]].
+
''of a Lebesgue space  $  ( X , \mu ) $''
 +
 
 +
An endomorphism  $  T $
 +
of  $  ( X , \mu ) $(
 +
cf. [[Metric isomorphism|Metric isomorphism]]) such that the only [[Measurable decomposition|measurable decomposition]]  $  \mathop{\rm mod}  0 $
 +
that is coarser  $  \mathop{\rm mod}  0 $
 +
than all  $  T  ^ {-} n \epsilon $,
 +
where  $  \epsilon $
 +
is the decomposition into points, is the trivial decomposition with as only element all of  $  X $.
 +
An equivalent definition is: There is no measurable decomposition that is invariant (in older terminology — totally invariant) under  $  T $(
 +
i.e. is such that  $  T  ^ {-} 1 \xi = \xi $
 +
$  \mathop{\rm mod}  0 $).
 +
Examples of such endomorphisms are a one-sided Bernoulli shift and an [[Expanding mapping|expanding mapping]].
 +
 
 +
Exact endomorphisms have strong ergodic properties analogous to those of $  K $-
 +
systems (to which they are related: there is a construction associating an automorphism to some endomorphism — its natural extension; for an exact endomorphism the latter is a $  K $-
 +
automorphism). Cf. [[K-system(2)| $  K $-
 +
system]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Rokhlin,  "Exact endomorphisms of a Lebesgue space"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''25''' :  4  (1961)  pp. 499–530  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.P. [I.P. Kornfel'd] Cornfel'd,  S.V. Fomin,  Ya.G. Sinai,  "Ergodic theory" , Springer  (1982)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Rokhlin,  "Exact endomorphisms of a Lebesgue space"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''25''' :  4  (1961)  pp. 499–530  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.P. [I.P. Kornfel'd] Cornfel'd,  S.V. Fomin,  Ya.G. Sinai,  "Ergodic theory" , Springer  (1982)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Instead of  "(measurable) decomposition"  one also uses (measurable) partition.
 
Instead of  "(measurable) decomposition"  one also uses (measurable) partition.
  
The usual definition is as follows: An [[Endomorphism|endomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673015.png" /> of a [[Lebesgue space|Lebesgue space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673016.png" /> is said to be exact whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673018.png" /> is the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673019.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673021.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036730/e03673022.png" />-algebra of subsets of measure 0 or 1. For a proof that expanding mappings are exact with respect to some measure, see e.g. [[#References|[a1]]], Sect. III.1.
+
The usual definition is as follows: An [[Endomorphism|endomorphism]] $  T $
 +
of a [[Lebesgue space|Lebesgue space]] $  ( X , \mu ) $
 +
is said to be exact whenever $  \cap _ {n=} 0 ^  \infty  T  ^ {-} n {\mathcal B} = {\mathcal N} $,  
 +
where $  {\mathcal B} $
 +
is the given $  \sigma $-
 +
algebra of $  ( X , \mu ) $
 +
and $  {\mathcal N} $
 +
is the $  \sigma $-
 +
algebra of subsets of measure 0 or 1. For a proof that expanding mappings are exact with respect to some measure, see e.g. [[#References|[a1]]], Sect. III.1.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Mañé,  "Ergodic theory and differentiable dynamics" , Springer  (1987)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Mañé,  "Ergodic theory and differentiable dynamics" , Springer  (1987)</TD></TR></table>

Latest revision as of 19:38, 5 June 2020


of a Lebesgue space $ ( X , \mu ) $

An endomorphism $ T $ of $ ( X , \mu ) $( cf. Metric isomorphism) such that the only measurable decomposition $ \mathop{\rm mod} 0 $ that is coarser $ \mathop{\rm mod} 0 $ than all $ T ^ {-} n \epsilon $, where $ \epsilon $ is the decomposition into points, is the trivial decomposition with as only element all of $ X $. An equivalent definition is: There is no measurable decomposition that is invariant (in older terminology — totally invariant) under $ T $( i.e. is such that $ T ^ {-} 1 \xi = \xi $ $ \mathop{\rm mod} 0 $). Examples of such endomorphisms are a one-sided Bernoulli shift and an expanding mapping.

Exact endomorphisms have strong ergodic properties analogous to those of $ K $- systems (to which they are related: there is a construction associating an automorphism to some endomorphism — its natural extension; for an exact endomorphism the latter is a $ K $- automorphism). Cf. $ K $- system.

References

[1] V.A. Rokhlin, "Exact endomorphisms of a Lebesgue space" Izv. Akad. Nauk SSSR Ser. Mat. , 25 : 4 (1961) pp. 499–530 (In Russian)
[2] I.P. [I.P. Kornfel'd] Cornfel'd, S.V. Fomin, Ya.G. Sinai, "Ergodic theory" , Springer (1982) (Translated from Russian)

Comments

Instead of "(measurable) decomposition" one also uses (measurable) partition.

The usual definition is as follows: An endomorphism $ T $ of a Lebesgue space $ ( X , \mu ) $ is said to be exact whenever $ \cap _ {n=} 0 ^ \infty T ^ {-} n {\mathcal B} = {\mathcal N} $, where $ {\mathcal B} $ is the given $ \sigma $- algebra of $ ( X , \mu ) $ and $ {\mathcal N} $ is the $ \sigma $- algebra of subsets of measure 0 or 1. For a proof that expanding mappings are exact with respect to some measure, see e.g. [a1], Sect. III.1.

References

[a1] R. Mañé, "Ergodic theory and differentiable dynamics" , Springer (1987)
How to Cite This Entry:
Exact endomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exact_endomorphism&oldid=46864
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article