Difference between revisions of "Everett interpolation formula"
m (→References: better) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | e0366501.png | ||
| + | $#A+1 = 27 n = 0 | ||
| + | $#C+1 = 27 : ~/encyclopedia/old_files/data/E036/E.0306650 Everett interpolation formula | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A method of writing the interpolation polynomial obtained from the [[Gauss interpolation formula|Gauss interpolation formula]] for forward interpolation at $ x = x _ {0} + th $ | |
| + | with respect to the nodes $ x _ {0} , x _ {0} + h , x _ {0} - h \dots x _ {0} + n h , x _ {0} - n h , x _ {0} + ( n + 1 ) h $, | ||
| + | that is, | ||
| + | |||
| + | $$ | ||
| + | G _ {2n+} 1 ( x) = G _ {2n+} 1 ( x _ {0} + t h ) = f _ {0} + t f _ {1/2} ^ { 1 } + | ||
| + | \frac{t ( t - 1 ) }{2!} | ||
| + | f _ \theta ^ { 2 } + \dots + | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | + | ||
| + | |||
| + | \frac{t ( t ^ {2} - 1 ) \dots [ t ^ {2} - ( n - 1 ) ^ {2} ] ( | ||
| + | t ^ {2} - n ^ {2} ) }{( 2 n + 1 ) } | ||
| + | f _ {1/2} ^ { 2n+ 1 } , | ||
| + | $$ | ||
without finite differences of odd order, which are eliminated by means of the relation | without finite differences of odd order, which are eliminated by means of the relation | ||
| − | + | $$ | |
| + | f _ {1/2} ^ { 2k+ 1 } = f _ {1} ^ { 2k } - f _ {0} ^ { 2k } . | ||
| + | $$ | ||
Adding like terms yields Everett's interpolation formula | Adding like terms yields Everett's interpolation formula | ||
| − | + | $$ \tag{1 } | |
| + | E _ {2n+} 1 ( x _ {0} + t h ) = S _ {0} ( u ) + S _ {1} ( t) , | ||
| + | $$ | ||
| + | |||
| + | where $ u = 1 - t $ | ||
| + | and | ||
| + | |||
| + | $$ \tag{2 } | ||
| + | S _ {q} ( t) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | f _ {q} t + f _ {q} ^ { 2 } | ||
| + | \frac{t ( t ^ {2} - 1 ) }{3!} | ||
| + | + \dots + | ||
| + | f _ {q} ^ { 2n } | ||
| + | \frac{t ( t ^ {2} - 1 ) \dots ( t ^ {2} - n ^ {2} ) }{( 2 n + 1 ) ! } | ||
| + | . | ||
| + | $$ | ||
| − | + | Compared with other versions of the interpolation polynomial, formula (1) reduces approximately by half the amount of work required to solve the problem of table condensation; for example, when a given table of the values of a function at $ x _ {0} + k h $ | |
| + | is to be used to draw up a table of the values of the same function at $ x _ {0} + k h ^ \prime $, | ||
| + | $ h ^ \prime = h / l $, | ||
| + | where $ l $ | ||
| + | is an integer, the values $ f ( x _ {0} - t h ) $ | ||
| + | for $ 0 < t < 1 $ | ||
| + | are computed be means of the formula | ||
| − | + | $$ | |
| + | f ( x _ {0} - t h ) = S _ {0} ( u ) + S _ {-} 1 ( t) ; | ||
| + | $$ | ||
| − | + | and $ S _ {0} ( u ) $ | |
| + | is used to find both values $ f ( x _ {0} \pm t h ) $. | ||
| − | + | For manual calculation in the case $ n = 2 $, | |
| + | L. J. Comrie introduced '''throwback'''. It is advisable to approximate the coefficient of $ f _ {q} ^ { 4 } $ | ||
| + | in (2) by | ||
| − | + | $$ | |
| + | - k | ||
| + | \frac{t ( t ^ {2} - 1 ) }{3!} | ||
| − | + | $$ | |
| − | + | and instead of $ S _ {q} ( t) $ | |
| + | to compute | ||
| − | + | $$ | |
| + | \overline{S}\; _ {q} ( t) = f _ {q} t + \left ( | ||
| + | f _ {q} ^ { 2 } - | ||
| + | \frac{k}{20} | ||
| + | f _ {q} ^ { 4 } \right ) | ||
| − | + | \frac{t ( t ^ {2} - 1 ) }{3!} | |
| + | . | ||
| + | $$ | ||
| − | The parameter | + | The parameter $ k $ |
| + | can be chosen, for example, from the condition that the principal part of | ||
| − | + | $$ | |
| + | \sup | E _ {5} ( x _ {0} + t h ) - \overline{E}\; _ {5} ( x _ {0} + t h ) | , | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| + | \overline{E}\; _ {5} ( x _ {0} + t h ) = \overline{S}\; _ {0} ( u ) + \overline{S}\; _ {1} ( t) ,\ \ | ||
| + | u = 1 - t , | ||
| + | $$ | ||
| − | has a minimum value. In this case | + | has a minimum value. In this case $ k = 3 . 6785 $. |
====References==== | ====References==== | ||
| Line 48: | Line 117: | ||
<TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR> | <TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR> | ||
</table> | </table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
Revision as of 19:38, 5 June 2020
A method of writing the interpolation polynomial obtained from the Gauss interpolation formula for forward interpolation at $ x = x _ {0} + th $
with respect to the nodes $ x _ {0} , x _ {0} + h , x _ {0} - h \dots x _ {0} + n h , x _ {0} - n h , x _ {0} + ( n + 1 ) h $,
that is,
$$ G _ {2n+} 1 ( x) = G _ {2n+} 1 ( x _ {0} + t h ) = f _ {0} + t f _ {1/2} ^ { 1 } + \frac{t ( t - 1 ) }{2!} f _ \theta ^ { 2 } + \dots + $$
$$ + \frac{t ( t ^ {2} - 1 ) \dots [ t ^ {2} - ( n - 1 ) ^ {2} ] ( t ^ {2} - n ^ {2} ) }{( 2 n + 1 ) } f _ {1/2} ^ { 2n+ 1 } , $$
without finite differences of odd order, which are eliminated by means of the relation
$$ f _ {1/2} ^ { 2k+ 1 } = f _ {1} ^ { 2k } - f _ {0} ^ { 2k } . $$
Adding like terms yields Everett's interpolation formula
$$ \tag{1 } E _ {2n+} 1 ( x _ {0} + t h ) = S _ {0} ( u ) + S _ {1} ( t) , $$
where $ u = 1 - t $ and
$$ \tag{2 } S _ {q} ( t) = $$
$$ = \ f _ {q} t + f _ {q} ^ { 2 } \frac{t ( t ^ {2} - 1 ) }{3!} + \dots + f _ {q} ^ { 2n } \frac{t ( t ^ {2} - 1 ) \dots ( t ^ {2} - n ^ {2} ) }{( 2 n + 1 ) ! } . $$
Compared with other versions of the interpolation polynomial, formula (1) reduces approximately by half the amount of work required to solve the problem of table condensation; for example, when a given table of the values of a function at $ x _ {0} + k h $ is to be used to draw up a table of the values of the same function at $ x _ {0} + k h ^ \prime $, $ h ^ \prime = h / l $, where $ l $ is an integer, the values $ f ( x _ {0} - t h ) $ for $ 0 < t < 1 $ are computed be means of the formula
$$ f ( x _ {0} - t h ) = S _ {0} ( u ) + S _ {-} 1 ( t) ; $$
and $ S _ {0} ( u ) $ is used to find both values $ f ( x _ {0} \pm t h ) $.
For manual calculation in the case $ n = 2 $, L. J. Comrie introduced throwback. It is advisable to approximate the coefficient of $ f _ {q} ^ { 4 } $ in (2) by
$$ - k \frac{t ( t ^ {2} - 1 ) }{3!} $$
and instead of $ S _ {q} ( t) $ to compute
$$ \overline{S}\; _ {q} ( t) = f _ {q} t + \left ( f _ {q} ^ { 2 } - \frac{k}{20} f _ {q} ^ { 4 } \right ) \frac{t ( t ^ {2} - 1 ) }{3!} . $$
The parameter $ k $ can be chosen, for example, from the condition that the principal part of
$$ \sup | E _ {5} ( x _ {0} + t h ) - \overline{E}\; _ {5} ( x _ {0} + t h ) | , $$
where
$$ \overline{E}\; _ {5} ( x _ {0} + t h ) = \overline{S}\; _ {0} ( u ) + \overline{S}\; _ {1} ( t) ,\ \ u = 1 - t , $$
has a minimum value. In this case $ k = 3 . 6785 $.
References
| [1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
| [2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
| [a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
| [a2] | A.J. Thomson, "Table of the coefficients of Everett's central difference interpolation formula" , Cambridge Univ. Press (1965) |
| [b1] | L. J. Comrie, "Inverse interpolation and scientific applications of the national accounting machine", Suppl. JR statist. Soc. London 3 (1936) 87-114 Zbl 63.1136.02 |
| [b2] | J. D. Everett, "On interpolation formulae", Quarterly J. 32 (1900) 306-313 Zbl 32.0271.01 |
| [b3] | Maurice V. Wilkes, "A short introduction to numerical analysis", Cambridge University Press (1966) ISBN 0-521-09412-7 Zbl 0149.10902 |
Everett interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Everett_interpolation_formula&oldid=46862