Namespaces
Variants
Actions

Difference between revisions of "Etale cohomology"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
Line 1: Line 1:
The cohomology of sheaves in the étale topology (cf. [[Etale topology|Etale topology]]). It is defined in the standard manner by means of derived functors. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362801.png" /> be a scheme and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362802.png" /> be the étale topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362803.png" />. Then the category of sheaves of Abelian groups on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362804.png" /> is an Abelian category with a sufficient collection of injective objects. The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362805.png" /> of global sections is left exact and its derived functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362806.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362807.png" /> is a sheaf of Abelian groups on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362808.png" />) are called cohomology functors. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e0362809.png" />. Similarly, one defines the higher direct images <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628011.png" /> relative to a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628012.png" />; for them there is an analogue of the [[Leray spectral sequence|Leray spectral sequence]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628013.png" /> is a sheaf of non-Abelian groups, one can define the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628014.png" /> (see [[Non-Abelian cohomology|Non-Abelian cohomology]]).
+
<!--
 +
e0362801.png
 +
$#A+1 = 38 n = 2
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/E036/E.0306280 Etale cohomology
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The most important results in the theory of étale cohomology are obtained for constructible étale sheaves of Abelian groups. Central among them is the finiteness theorem and the base-change theorem: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628015.png" /> be a proper morphism and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628016.png" /> be a constructible sheaf on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628017.png" />. Then the sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628018.png" /> are constructible and the stalk of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628019.png" /> at a geometric point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628020.png" /> is isomorphic to the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628021.png" /> of the stalk <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628022.png" />. Similar theorems are true for any morphism of finite type, provided that one uses cohomology with compact support.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628023.png" /> is an algebraic variety over an algebraically closed field, then for any constructible sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628024.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628025.png" /> the cohomology groups with compact support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628026.png" /> are finite and vanish for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628027.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628028.png" /> is an affine variety, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628029.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628030.png" />.
+
The cohomology of sheaves in the étale topology (cf. [[Etale topology|Etale topology]]). It is defined in the standard manner by means of derived functors. Let  $  X $
 +
be a scheme and let  $  X _ {et} $
 +
be the étale topology on $  X $.  
 +
Then the category of sheaves of Abelian groups on  $  X _ {et} $
 +
is an Abelian category with a sufficient collection of injective objects. The functor  $  \Gamma $
 +
of global sections is left exact and its derived functors  $  {\mathcal F} \mapsto H  ^ {q} ( X , {\mathcal F}  ) $(
 +
where  $  {\mathcal F} $
 +
is a sheaf of Abelian groups on  $  X _ {et} $)
 +
are called cohomology functors. Here  $  H  ^ {0} ( X , {\mathcal F}  ) = \Gamma ( {\mathcal F}  ) = {\mathcal F} ( X) $.  
 +
Similarly, one defines the higher direct images  $  R  ^ {q} f _ {*} ( {\mathcal F}  ) $
 +
of  $  {\mathcal F} $
 +
relative to a morphism  $  f : X \rightarrow Y $;
 +
for them there is an analogue of the [[Leray spectral sequence|Leray spectral sequence]]. If  $  {\mathcal F} $
 +
is a sheaf of non-Abelian groups, one can define the set  $  H  ^ {1} ( X , {\mathcal F}  ) $(
 +
see [[Non-Abelian cohomology|Non-Abelian cohomology]]).
  
For varieties over the field of complex numbers the étale cohomology of constructible sheaves is the same as the classical cohomology with values in these sheaves. The specialization theorem for a smooth morphism holds: Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628031.png" /> is a smooth proper morphism of schemes and that the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628032.png" /> is invertible on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628033.png" />. Then the sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628034.png" /> are locally constant on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628035.png" />.
+
The most important results in the theory of étale cohomology are obtained for constructible étale sheaves of Abelian groups. Central among them is the finiteness theorem and the base-change theorem: Let  $  f : X \rightarrow Y $
 +
be a proper morphism and let  $  {\mathcal F} $
 +
be a constructible sheaf on $  X $.  
 +
Then the sheaves $  R  ^ {q} f _ {*} ( {\mathcal F}  ) $
 +
are constructible and the stalk of  $  R  ^ {q} f _ {*} ( {\mathcal F}  ) $
 +
at a geometric point  $  y \rightarrow Y $
 +
is isomorphic to the cohomology group  $  H  ^ {q} ( f ^ { - 1 } ( y) , {\mathcal F}  ) $
 +
of the stalk  $  f ^ { - 1 } ( y) = X \times _ {Y} y $.  
 +
Similar theorems are true for any morphism of finite type, provided that one uses cohomology with compact support.
  
For étale cohomology there is an analogue of Poincaré duality (see [[Duality|Duality]] in algebraic geometry) and the [[Künneth formula|Künneth formula]]. Every algebraic cycle of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628036.png" /> gives a cohomology class in dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628037.png" />, which makes it possible to construct a theory of Chern classes (cf. [[Chern class|Chern class]]).
+
If  $  X $
 +
is an algebraic variety over an algebraically closed field, then for any constructible sheaf  $  {\mathcal F} $
 +
on  $  X $
 +
the cohomology groups with compact support  $  H _ {C}  ^ {q} ( X , {\mathcal F}  ) $
 +
are finite and vanish for  $  q > 2  \mathop{\rm dim}  X $.  
 +
If, in addition,  $  X $
 +
is an affine variety, then  $  H  ^ {q} ( X , {\mathcal F}  ) = 0 $
 +
for  $  q > \mathop{\rm dim}  X $.
  
Etale cohomology of constructible sheaves is used to set up [[L-adic-cohomology|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628038.png" />-adic cohomology]] and to prove the Weil conjecture on the [[Zeta-function|zeta-function]].
+
For varieties over the field of complex numbers the étale cohomology of constructible sheaves is the same as the classical cohomology with values in these sheaves. The specialization theorem for a smooth morphism holds: Suppose that  $  f :  X \rightarrow Y $
 +
is a smooth proper morphism of schemes and that the integer  $  n $
 +
is invertible on  $  Y $.
 +
Then the sheaves  $  R  ^ {q} f _ {*} ( \mathbf Z / n \mathbf Z) $
 +
are locally constant on  $  Y $.
 +
 
 +
For étale cohomology there is an analogue of Poincaré duality (see [[Duality|Duality]] in algebraic geometry) and the [[Künneth formula|Künneth formula]]. Every algebraic cycle of codimension  $  i $
 +
gives a cohomology class in dimension  $  2 i $,
 +
which makes it possible to construct a theory of Chern classes (cf. [[Chern class|Chern class]]).
 +
 
 +
Etale cohomology of constructible sheaves is used to set up [[L-adic-cohomology| $  l $-
 +
adic cohomology]] and to prove the Weil conjecture on the [[Zeta-function|zeta-function]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , ''Proc. Internat. Math. Congress Edinburgh, 1958'' , Cambridge Univ. Press (1960) pp. 103–118 {{MR|0130879}} {{ZBL|0119.36902}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.S. Milne, "Etale cohomology" , Princeton Univ. Press (1980) {{MR|0559531}} {{ZBL|0433.14012}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Deligne, "Cohomologie étale (SGA 4 1/2)" , ''Lect. notes in math.'' , '''569''' , Springer (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Grothendieck, I. Bucur, C. Honzel, L. Illusie, J.-P. Jouanolou, J.-P. Serre, "Cohomologie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628039.png" />-adique et fonctions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628040.png" />. SGA 5" , ''Lect. notes in math.'' , '''589''' , Springer (1977) {{MR|491704}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4)'' , ''Lect. notes in math.'' , '''269; 270; 305''' , Springer (1972–1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , ''Proc. Internat. Math. Congress Edinburgh, 1958'' , Cambridge Univ. Press (1960) pp. 103–118 {{MR|0130879}} {{ZBL|0119.36902}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.S. Milne, "Etale cohomology" , Princeton Univ. Press (1980) {{MR|0559531}} {{ZBL|0433.14012}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Deligne, "Cohomologie étale (SGA 4 1/2)" , ''Lect. notes in math.'' , '''569''' , Springer (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Grothendieck, I. Bucur, C. Honzel, L. Illusie, J.-P. Jouanolou, J.-P. Serre, "Cohomologie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628039.png" />-adique et fonctions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036280/e03628040.png" />. SGA 5" , ''Lect. notes in math.'' , '''589''' , Springer (1977) {{MR|491704}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , ''Théorie des topos et cohomologie étale des schémas (SGA 4)'' , ''Lect. notes in math.'' , '''269; 270; 305''' , Springer (1972–1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Deligue, "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–308</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Deligue, "La conjecture de Weil II" ''Publ. Math. IHES'' , '''52''' (1980) pp. 137–252</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Deligue, "La conjecture de Weil I" ''Publ. Math. IHES'' , '''43''' (1974) pp. 273–308</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Deligue, "La conjecture de Weil II" ''Publ. Math. IHES'' , '''52''' (1980) pp. 137–252</TD></TR></table>

Revision as of 19:38, 5 June 2020


The cohomology of sheaves in the étale topology (cf. Etale topology). It is defined in the standard manner by means of derived functors. Let $ X $ be a scheme and let $ X _ {et} $ be the étale topology on $ X $. Then the category of sheaves of Abelian groups on $ X _ {et} $ is an Abelian category with a sufficient collection of injective objects. The functor $ \Gamma $ of global sections is left exact and its derived functors $ {\mathcal F} \mapsto H ^ {q} ( X , {\mathcal F} ) $( where $ {\mathcal F} $ is a sheaf of Abelian groups on $ X _ {et} $) are called cohomology functors. Here $ H ^ {0} ( X , {\mathcal F} ) = \Gamma ( {\mathcal F} ) = {\mathcal F} ( X) $. Similarly, one defines the higher direct images $ R ^ {q} f _ {*} ( {\mathcal F} ) $ of $ {\mathcal F} $ relative to a morphism $ f : X \rightarrow Y $; for them there is an analogue of the Leray spectral sequence. If $ {\mathcal F} $ is a sheaf of non-Abelian groups, one can define the set $ H ^ {1} ( X , {\mathcal F} ) $( see Non-Abelian cohomology).

The most important results in the theory of étale cohomology are obtained for constructible étale sheaves of Abelian groups. Central among them is the finiteness theorem and the base-change theorem: Let $ f : X \rightarrow Y $ be a proper morphism and let $ {\mathcal F} $ be a constructible sheaf on $ X $. Then the sheaves $ R ^ {q} f _ {*} ( {\mathcal F} ) $ are constructible and the stalk of $ R ^ {q} f _ {*} ( {\mathcal F} ) $ at a geometric point $ y \rightarrow Y $ is isomorphic to the cohomology group $ H ^ {q} ( f ^ { - 1 } ( y) , {\mathcal F} ) $ of the stalk $ f ^ { - 1 } ( y) = X \times _ {Y} y $. Similar theorems are true for any morphism of finite type, provided that one uses cohomology with compact support.

If $ X $ is an algebraic variety over an algebraically closed field, then for any constructible sheaf $ {\mathcal F} $ on $ X $ the cohomology groups with compact support $ H _ {C} ^ {q} ( X , {\mathcal F} ) $ are finite and vanish for $ q > 2 \mathop{\rm dim} X $. If, in addition, $ X $ is an affine variety, then $ H ^ {q} ( X , {\mathcal F} ) = 0 $ for $ q > \mathop{\rm dim} X $.

For varieties over the field of complex numbers the étale cohomology of constructible sheaves is the same as the classical cohomology with values in these sheaves. The specialization theorem for a smooth morphism holds: Suppose that $ f : X \rightarrow Y $ is a smooth proper morphism of schemes and that the integer $ n $ is invertible on $ Y $. Then the sheaves $ R ^ {q} f _ {*} ( \mathbf Z / n \mathbf Z) $ are locally constant on $ Y $.

For étale cohomology there is an analogue of Poincaré duality (see Duality in algebraic geometry) and the Künneth formula. Every algebraic cycle of codimension $ i $ gives a cohomology class in dimension $ 2 i $, which makes it possible to construct a theory of Chern classes (cf. Chern class).

Etale cohomology of constructible sheaves is used to set up $ l $- adic cohomology and to prove the Weil conjecture on the zeta-function.

References

[1] A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , Proc. Internat. Math. Congress Edinburgh, 1958 , Cambridge Univ. Press (1960) pp. 103–118 MR0130879 Zbl 0119.36902
[2] J.S. Milne, "Etale cohomology" , Princeton Univ. Press (1980) MR0559531 Zbl 0433.14012
[3] P. Deligne, "Cohomologie étale (SGA 4 1/2)" , Lect. notes in math. , 569 , Springer (1977)
[4] A. Grothendieck, I. Bucur, C. Honzel, L. Illusie, J.-P. Jouanolou, J.-P. Serre, "Cohomologie -adique et fonctions . SGA 5" , Lect. notes in math. , 589 , Springer (1977) MR491704
[5] M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schémas (SGA 4) , Lect. notes in math. , 269; 270; 305 , Springer (1972–1973)

Comments

References

[a1] P. Deligue, "La conjecture de Weil I" Publ. Math. IHES , 43 (1974) pp. 273–308
[a2] P. Deligue, "La conjecture de Weil II" Publ. Math. IHES , 52 (1980) pp. 137–252
How to Cite This Entry:
Etale cohomology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Etale_cohomology&oldid=46853
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article