Namespaces
Variants
Actions

Difference between revisions of "Equi-affine connection"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An [[Affine connection|affine connection]] on a smooth manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359401.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359402.png" /> for which there is a non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359403.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359404.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359405.png" /> that is covariantly constant with respect to it. The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359406.png" /> can be interpreted as the volume function of the parallelepiped constructed from the vectors of the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359407.png" />; this condition implies the existence of a volume that is preserved by [[Parallel displacement(2)|parallel displacement]] of vectors. If the affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359408.png" /> is given by means of a matrix of local connection forms
+
<!--
 +
e0359401.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/E035/E.0305940 Equi\AAhaffine connection
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e0359409.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594010.png" /></td> </tr></table>
+
An [[Affine connection|affine connection]] on a smooth manifold  $  M $
 +
of dimension  $  n $
 +
for which there is a non-zero  $  n $-
 +
form  $  \Phi $
 +
on  $  M $
 +
that is covariantly constant with respect to it. The form  $  \Phi ( X _ {1} \dots X _ {n} ) $
 +
can be interpreted as the volume function of the parallelepiped constructed from the vectors of the fields  $  X _ {1} \dots X _ {n} $;  
 +
this condition implies the existence of a volume that is preserved by [[Parallel displacement(2)|parallel displacement]] of vectors. If the affine connection on  $  M $
 +
is given by means of a matrix of local connection forms
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594011.png" />, then the above condition on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594012.png" /> has the form
+
$$
 +
\omega  ^ {i}  = \Gamma _ {k}  ^ {i} ( k)  d x  ^ {k} ,\ \
 +
\mathop{\rm det}  | \Gamma _ {k}  ^ {i} |  \neq  0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594013.png" /></td> </tr></table>
+
$$
 +
\omega _ {j}  ^ {i}  = \Gamma _ {jk}  ^ {i} ( k) \omega  ^ {k} ,
 +
$$
  
Equivalently, an affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594014.png" /> is equi-affine if and only if its [[Holonomy group|holonomy group]] is the affine unimodular group. In the case of a torsion-free connection this condition is equivalent to the symmetry of the [[Ricci tensor|Ricci tensor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594015.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594016.png" />. In the presence of an equi-affine connection the frame bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594017.png" /> can be reduced to a subbundle with respect to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035940/e03594018.png" />.
+
and  $  \Phi = \lambda \omega  ^ {1} \wedge \dots \wedge \omega  ^ {n} $,
 +
then the above condition on  $  \Phi $
 +
has the form
 +
 
 +
$$
 +
d \lambda  =  \lambda \omega _ {i}  ^ {i} .
 +
$$
 +
 
 +
Equivalently, an affine connection on $  M $
 +
is equi-affine if and only if its [[Holonomy group|holonomy group]] is the affine unimodular group. In the case of a torsion-free connection this condition is equivalent to the symmetry of the [[Ricci tensor|Ricci tensor]] $  R _ {kl} = R _ {kli}  ^ {i} $,  
 +
that is, $  R _ {kl} = R _ {lk} $.  
 +
In the presence of an equi-affine connection the frame bundle of $  M $
 +
can be reduced to a subbundle with respect to which $  \omega _ {i}  ^ {i} = 0 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.P. Norden,  "Spaces with an affine connection" , Nauka , Moscow-Leningrad  (1976)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.P. Norden,  "Spaces with an affine connection" , Nauka , Moscow-Leningrad  (1976)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  (Translated from German)</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


An affine connection on a smooth manifold $ M $ of dimension $ n $ for which there is a non-zero $ n $- form $ \Phi $ on $ M $ that is covariantly constant with respect to it. The form $ \Phi ( X _ {1} \dots X _ {n} ) $ can be interpreted as the volume function of the parallelepiped constructed from the vectors of the fields $ X _ {1} \dots X _ {n} $; this condition implies the existence of a volume that is preserved by parallel displacement of vectors. If the affine connection on $ M $ is given by means of a matrix of local connection forms

$$ \omega ^ {i} = \Gamma _ {k} ^ {i} ( k) d x ^ {k} ,\ \ \mathop{\rm det} | \Gamma _ {k} ^ {i} | \neq 0 , $$

$$ \omega _ {j} ^ {i} = \Gamma _ {jk} ^ {i} ( k) \omega ^ {k} , $$

and $ \Phi = \lambda \omega ^ {1} \wedge \dots \wedge \omega ^ {n} $, then the above condition on $ \Phi $ has the form

$$ d \lambda = \lambda \omega _ {i} ^ {i} . $$

Equivalently, an affine connection on $ M $ is equi-affine if and only if its holonomy group is the affine unimodular group. In the case of a torsion-free connection this condition is equivalent to the symmetry of the Ricci tensor $ R _ {kl} = R _ {kli} ^ {i} $, that is, $ R _ {kl} = R _ {lk} $. In the presence of an equi-affine connection the frame bundle of $ M $ can be reduced to a subbundle with respect to which $ \omega _ {i} ^ {i} = 0 $.

References

[1] A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)

Comments

References

[a1] J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)
How to Cite This Entry:
Equi-affine connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Equi-affine_connection&oldid=46839
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article