Difference between revisions of "Elliott-Daboussi theorem"
Ulf Rehmann (talk | contribs) m (moved Elliott–Daboussi theorem to Elliott-Daboussi theorem: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | e1100501.png | ||
+ | $#A+1 = 27 n = 3 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/E110/E.1100050 Elliott\ANDDaboussi theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The [[Delange theorem|Delange theorem]], proved in 1961, gives necessary and sufficient conditions for a [[Multiplicative arithmetic function|multiplicative arithmetic function]] $ f : \mathbf N \rightarrow \mathbf C $, | |
+ | of modulus $ | f | \leq 1 $, | ||
+ | to possess a non-zero mean value. The unpleasant condition $ | f | \leq 1 $ | ||
+ | was replaced by P.D.T.A. Elliott, in 1975–1980, by boundedness of a [[Semi-norm|semi-norm]] | ||
− | + | $$ | |
+ | \left \| f \right \| _ {q} = \left \{ {\lim\limits \sup } _ {x \rightarrow \infty } { | ||
+ | \frac{1}{x} | ||
+ | } \cdot \sum _ {n \leq x } \left | {f ( n ) } \right | ^ {q} \right \} ^ { {1 / q } } . | ||
+ | $$ | ||
− | + | More precisely, Elliott showed (see [[#References|[a4]]], [[#References|[a6]]]) the following result. Assume that $ q > 1 $ | |
+ | and that $ f $ | ||
+ | is a multiplicative arithmetic function with bounded semi-norm $ \| f \| _ {q} $. | ||
+ | Then the mean value | ||
+ | |||
+ | $$ | ||
+ | M ( f ) = {\lim\limits } _ {x \rightarrow \infty } { | ||
+ | \frac{1}{x} | ||
+ | } \cdot \sum _ {n \leq x } f ( n ) | ||
+ | $$ | ||
+ | |||
+ | of $ f $ | ||
+ | exists and is non-zero if and only if | ||
i) the four series | i) the four series | ||
− | + | $$ | |
+ | S _ {1} ( f ) = \sum _ { p } { | ||
+ | \frac{1}{p} | ||
+ | } \cdot ( f ( p ) - 1 ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | S _ {2} ^ \prime ( f ) = \sum _ {\left \{ p : {\left | {f ( p ) } \right | \leq {5 / 4 } } \right \} } { | ||
+ | \frac{1}{p} | ||
+ | } \cdot \left | {f ( p ) - 1 } \right | ^ {2} , | ||
+ | $$ | ||
− | + | $$ | |
+ | S _ {2,q } ^ {\prime \prime } ( f ) = \sum _ {\left \{ p : {\left | {f ( p ) } \right | > {5 / 4 } } \right \} } { | ||
+ | \frac{1}{p} | ||
+ | } \cdot \left | {f ( p ) } \right | ^ {q} , | ||
+ | $$ | ||
− | + | $$ | |
+ | S _ {3,q } ( f ) = \sum _ { p } \sum _ {k \geq 2 } { | ||
+ | \frac{1}{p ^ {k} } | ||
+ | } \cdot \left | {f ( p ^ {k} ) } \right | ^ {q} | ||
+ | $$ | ||
are convergent; and | are convergent; and | ||
− | ii) | + | ii) $ \sum _ {k = 0 } ^ \infty p ^ {- k } \cdot f ( p ^ {k} ) \neq 0 $ |
+ | for every prime $ p $. | ||
− | H. Daboussi [[#References|[a3]]] gave another proof for this result and extended it [[#References|[a2]]] to multiplicative functions | + | H. Daboussi [[#References|[a3]]] gave another proof for this result and extended it [[#References|[a2]]] to multiplicative functions $ f $ |
+ | having at least one non-zero Fourier coefficient $ {\widehat{f} } ( \alpha ) = M ( n \mapsto f ( n ) \cdot { \mathop{\rm exp} } \{ 2 \pi i \cdot \alpha n \} ) $; | ||
+ | the necessary and sufficient conditions for this to happen are the convergence of the series $ S _ {1} ( \chi f ) $, | ||
+ | $ S _ {2} ^ \prime ( \chi f ) $, | ||
+ | $ S _ {2,q } ^ {\prime \prime } ( f ) $, | ||
+ | and $ S _ {3,q } ( f ) $ | ||
+ | for some [[Dirichlet character|Dirichlet character]] $ \chi $. | ||
− | See also [[#References|[a5]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]], [[#References|[a1]]]. In fact, the conditions of the Elliott–Daboussi theorem ensure that | + | See also [[#References|[a5]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]], [[#References|[a1]]]. In fact, the conditions of the Elliott–Daboussi theorem ensure that $ f $ |
+ | belongs to the space $ {\mathcal B} ^ {q} $, | ||
+ | which is the $ \| \cdot \| _ {q} $- | ||
+ | closure of the vector space of linear combinations of the Ramanujan sums $ c _ {r} $, | ||
+ | $ r = 1,2, \dots $. | ||
+ | For details see [[#References|[a10]]], Chapts. VI, VII. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Codecà, M. Nair, "On Elliott's theorem on multiplicative functions" , ''Proc. Amalfi Conf. Analytic Number Theory'' , '''1989''' (1992) pp. 17–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Daboussi, "Caractérisation des fonctions multiplicatives p.p. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005028.png" /> à spectre non vide" ''Ann. Inst. Fourier Grenoble'' , '''30''' (1980) pp. 141–166</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Daboussi, "Sur les fonctions multiplicatives ayant une valeur moyenne non nulle" ''Bull. Soc. Math. France'' , '''109''' (1981) pp. 183–205</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P.D.T.A. Elliott, "A mean-value theorem for multiplicative functions" ''Proc. London Math. Soc. (3)'' , '''31''' (1975) pp. 418–438</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P.D.T.A. Elliott, "Probabilistic number theory" , '''I–II''' , Springer (1979–1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.D.T.A. Elliott, "Mean value theorems for functions bounded in mean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005029.png" />-power, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005030.png" />" ''J. Austral. Math. Soc. Ser. A'' , '''29''' (1980) pp. 177–205</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> K.-H. Indlekofer, "A mean-value theorem for multiplicative functions" ''Math. Z.'' , '''172''' (1980) pp. 255–271</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "Eine Bemerkung zur Charakterisierung der fastperiodischen multiplikativen zahlentheoretischen Funktionen mit von Null verschiedenem Mittelwert" ''Analysis'' , '''3''' (1983) pp. 205–216</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "A variant of proof of Daboussi's theorem on the characterization of multiplicative functions with non-void Fourier–Bohr spectrum" ''Analysis'' , '''6''' (1986) pp. 237–249</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "Arithmetical functions" , Cambridge Univ. Press (1994)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Codecà, M. Nair, "On Elliott's theorem on multiplicative functions" , ''Proc. Amalfi Conf. Analytic Number Theory'' , '''1989''' (1992) pp. 17–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Daboussi, "Caractérisation des fonctions multiplicatives p.p. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005028.png" /> à spectre non vide" ''Ann. Inst. Fourier Grenoble'' , '''30''' (1980) pp. 141–166</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Daboussi, "Sur les fonctions multiplicatives ayant une valeur moyenne non nulle" ''Bull. Soc. Math. France'' , '''109''' (1981) pp. 183–205</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P.D.T.A. Elliott, "A mean-value theorem for multiplicative functions" ''Proc. London Math. Soc. (3)'' , '''31''' (1975) pp. 418–438</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P.D.T.A. Elliott, "Probabilistic number theory" , '''I–II''' , Springer (1979–1980)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.D.T.A. Elliott, "Mean value theorems for functions bounded in mean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005029.png" />-power, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110050/e11005030.png" />" ''J. Austral. Math. Soc. Ser. A'' , '''29''' (1980) pp. 177–205</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> K.-H. Indlekofer, "A mean-value theorem for multiplicative functions" ''Math. Z.'' , '''172''' (1980) pp. 255–271</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "Eine Bemerkung zur Charakterisierung der fastperiodischen multiplikativen zahlentheoretischen Funktionen mit von Null verschiedenem Mittelwert" ''Analysis'' , '''3''' (1983) pp. 205–216</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "A variant of proof of Daboussi's theorem on the characterization of multiplicative functions with non-void Fourier–Bohr spectrum" ''Analysis'' , '''6''' (1986) pp. 237–249</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> W. Schwarz, J. Spilker, "Arithmetical functions" , Cambridge Univ. Press (1994)</TD></TR></table> |
Revision as of 19:37, 5 June 2020
The Delange theorem, proved in 1961, gives necessary and sufficient conditions for a multiplicative arithmetic function $ f : \mathbf N \rightarrow \mathbf C $,
of modulus $ | f | \leq 1 $,
to possess a non-zero mean value. The unpleasant condition $ | f | \leq 1 $
was replaced by P.D.T.A. Elliott, in 1975–1980, by boundedness of a semi-norm
$$ \left \| f \right \| _ {q} = \left \{ {\lim\limits \sup } _ {x \rightarrow \infty } { \frac{1}{x} } \cdot \sum _ {n \leq x } \left | {f ( n ) } \right | ^ {q} \right \} ^ { {1 / q } } . $$
More precisely, Elliott showed (see [a4], [a6]) the following result. Assume that $ q > 1 $ and that $ f $ is a multiplicative arithmetic function with bounded semi-norm $ \| f \| _ {q} $. Then the mean value
$$ M ( f ) = {\lim\limits } _ {x \rightarrow \infty } { \frac{1}{x} } \cdot \sum _ {n \leq x } f ( n ) $$
of $ f $ exists and is non-zero if and only if
i) the four series
$$ S _ {1} ( f ) = \sum _ { p } { \frac{1}{p} } \cdot ( f ( p ) - 1 ) , $$
$$ S _ {2} ^ \prime ( f ) = \sum _ {\left \{ p : {\left | {f ( p ) } \right | \leq {5 / 4 } } \right \} } { \frac{1}{p} } \cdot \left | {f ( p ) - 1 } \right | ^ {2} , $$
$$ S _ {2,q } ^ {\prime \prime } ( f ) = \sum _ {\left \{ p : {\left | {f ( p ) } \right | > {5 / 4 } } \right \} } { \frac{1}{p} } \cdot \left | {f ( p ) } \right | ^ {q} , $$
$$ S _ {3,q } ( f ) = \sum _ { p } \sum _ {k \geq 2 } { \frac{1}{p ^ {k} } } \cdot \left | {f ( p ^ {k} ) } \right | ^ {q} $$
are convergent; and
ii) $ \sum _ {k = 0 } ^ \infty p ^ {- k } \cdot f ( p ^ {k} ) \neq 0 $ for every prime $ p $.
H. Daboussi [a3] gave another proof for this result and extended it [a2] to multiplicative functions $ f $ having at least one non-zero Fourier coefficient $ {\widehat{f} } ( \alpha ) = M ( n \mapsto f ( n ) \cdot { \mathop{\rm exp} } \{ 2 \pi i \cdot \alpha n \} ) $; the necessary and sufficient conditions for this to happen are the convergence of the series $ S _ {1} ( \chi f ) $, $ S _ {2} ^ \prime ( \chi f ) $, $ S _ {2,q } ^ {\prime \prime } ( f ) $, and $ S _ {3,q } ( f ) $ for some Dirichlet character $ \chi $.
See also [a5], [a7], [a8], [a9], [a1]. In fact, the conditions of the Elliott–Daboussi theorem ensure that $ f $ belongs to the space $ {\mathcal B} ^ {q} $, which is the $ \| \cdot \| _ {q} $- closure of the vector space of linear combinations of the Ramanujan sums $ c _ {r} $, $ r = 1,2, \dots $. For details see [a10], Chapts. VI, VII.
References
[a1] | P. Codecà, M. Nair, "On Elliott's theorem on multiplicative functions" , Proc. Amalfi Conf. Analytic Number Theory , 1989 (1992) pp. 17–34 |
[a2] | H. Daboussi, "Caractérisation des fonctions multiplicatives p.p. à spectre non vide" Ann. Inst. Fourier Grenoble , 30 (1980) pp. 141–166 |
[a3] | H. Daboussi, "Sur les fonctions multiplicatives ayant une valeur moyenne non nulle" Bull. Soc. Math. France , 109 (1981) pp. 183–205 |
[a4] | P.D.T.A. Elliott, "A mean-value theorem for multiplicative functions" Proc. London Math. Soc. (3) , 31 (1975) pp. 418–438 |
[a5] | P.D.T.A. Elliott, "Probabilistic number theory" , I–II , Springer (1979–1980) |
[a6] | P.D.T.A. Elliott, "Mean value theorems for functions bounded in mean -power, " J. Austral. Math. Soc. Ser. A , 29 (1980) pp. 177–205 |
[a7] | K.-H. Indlekofer, "A mean-value theorem for multiplicative functions" Math. Z. , 172 (1980) pp. 255–271 |
[a8] | W. Schwarz, J. Spilker, "Eine Bemerkung zur Charakterisierung der fastperiodischen multiplikativen zahlentheoretischen Funktionen mit von Null verschiedenem Mittelwert" Analysis , 3 (1983) pp. 205–216 |
[a9] | W. Schwarz, J. Spilker, "A variant of proof of Daboussi's theorem on the characterization of multiplicative functions with non-void Fourier–Bohr spectrum" Analysis , 6 (1986) pp. 237–249 |
[a10] | W. Schwarz, J. Spilker, "Arithmetical functions" , Cambridge Univ. Press (1994) |
Elliott-Daboussi theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Elliott-Daboussi_theorem&oldid=46804