Difference between revisions of "Ekeland variational principle"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | There are usually three ways for getting existence results in analysis, namely compactness, Hahn–Banach-type results and completeness properties (cf. [[Compactness|Compactness]]; [[Hahn–Banach theorem|Hahn–Banach theorem]]; [[Completeness (in topology)|Completeness (in topology)]]). The Ekeland variational principle [[#References|[a10]]] (which provides a characterization of complete metric spaces [[#References|[a14]]], cf. also [[Complete metric space|Complete metric space]]) illustrates the third method in the framework of optimization. Let | + | <!-- |
+ | e1100301.png | ||
+ | $#A+1 = 63 n = 1 | ||
+ | $#C+1 = 63 : ~/encyclopedia/old_files/data/E110/E.1100030 Ekeland variational principle | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | There are usually three ways for getting existence results in analysis, namely compactness, Hahn–Banach-type results and completeness properties (cf. [[Compactness|Compactness]]; [[Hahn–Banach theorem|Hahn–Banach theorem]]; [[Completeness (in topology)|Completeness (in topology)]]). The Ekeland variational principle [[#References|[a10]]] (which provides a characterization of complete metric spaces [[#References|[a14]]], cf. also [[Complete metric space|Complete metric space]]) illustrates the third method in the framework of optimization. Let $ f $ | ||
+ | be a lower [[Semi-continuous function|semi-continuous function]] defined on a [[Complete metric space|complete metric space]] $ ( X,d ) $, | ||
+ | with values in the extended line $ \mathbf R \cup \{ + \infty \} $, | ||
+ | and bounded from below. It is well known that the lower bound of $ f $ | ||
+ | over $ X $ | ||
+ | need not be attained. Ekeland's basic principle asserts that there exists a slight perturbation of $ f $ | ||
+ | which attains its minimum on $ X $. | ||
+ | More precisely, there exists a point $ a \in X $ | ||
+ | such that $ f ( a ) < f ( x ) + d ( a,x ) $ | ||
+ | for all $ x \in X \setminus \{ a \} $; | ||
+ | this says that the function $ f ( \cdot ) + d ( a, \cdot ) $ | ||
+ | has a strict minimum on $ X $ | ||
+ | at $ a $. | ||
+ | It is interesting to observe that the conclusion of the basic principle is equivalent to the existence of a maximal element in the [[epigraph]] $ { \mathop{\rm epi} } f = \{ {( x,r ) \in X \times \mathbf R } : {f ( x ) \leq r } \} $ | ||
+ | for the order defined on $ X \times \mathbf R $ | ||
+ | by $ ( x _ {1} ,r _ {1} ) \cle ( x _ {2} ,r _ {2} ) $ | ||
+ | if and only if $ r _ {2} - r _ {1} + d ( x _ {2} ,x _ {1} ) \leq 0 $[[#References|[a3]]]. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e110030a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e110030a.gif" /> | ||
Line 5: | Line 33: | ||
Figure: e110030a | Figure: e110030a | ||
− | From this basic principle one can deduce some variants which are in fact equivalent to the basic statement. The first one is as follows: given | + | From this basic principle one can deduce some variants which are in fact equivalent to the basic statement. The first one is as follows: given $ \epsilon > 0 $, |
+ | $ x _ {0} \in X $ | ||
+ | such that $ f ( x _ {0} ) < \inf _ {x \in X } f ( x ) + \epsilon $ | ||
+ | and applying the basic principle to the complete metric space $ {\widetilde{X} } = \{ {z \in X } : {f ( z ) + d ( x _ {0} ,z ) \leq f ( x _ {0} ) } \} $, | ||
+ | one obtains the existence of a point $ a \in X $ | ||
+ | such that $ f ( a ) + d ( a,x _ {0} ) \leq f ( x _ {0} ) $ | ||
+ | and $ f ( a ) < f ( x ) + d ( a,x ) $ | ||
+ | for all $ x \in X \setminus \{ a \} $. | ||
+ | In particular, this implies that $ | {f ( a ) - f ( x _ {0} ) } | \leq \epsilon $. | ||
+ | Applying the previous result with the metric $ \gamma d $, | ||
+ | $ \gamma > 0 $, | ||
+ | yields the second variant: there exists an $ a \in X $ | ||
+ | such that | ||
− | + | $$ | |
+ | d ( a,x _ {0} ) \leq \gamma ^ {- 1 } \epsilon, | ||
+ | $$ | ||
− | + | $$ | |
+ | \left | {f ( a ) - f ( x _ {0} ) } \right | \leq \epsilon, | ||
+ | $$ | ||
− | < | + | $$ |
+ | f ( a ) < f ( x ) + \gamma d ( a,x ) \textrm{ for all } x \in X \setminus \{ a \} . | ||
+ | $$ | ||
− | This variational principle has several equivalent geometric formulations. For instance, the Phelps extremization principle and the Drop theorem [[#References|[a7]]], [[#References|[a12]]] (see [[#References|[a13]]] for the versions as stated here). Let | + | This variational principle has several equivalent geometric formulations. For instance, the Phelps extremization principle and the Drop theorem [[#References|[a7]]], [[#References|[a12]]] (see [[#References|[a13]]] for the versions as stated here). Let $ A $ |
+ | be a closed subset of a [[Banach space|Banach space]] $ X $, | ||
+ | let $ x \in A $ | ||
+ | and let $ C $ | ||
+ | be a closed convex bounded subset of $ X $ | ||
+ | such that $ A \cap ( x + C ) = \emptyset $. | ||
+ | Then there exist a $ z \in A \cap ( x + [ 0,1 ] C ) $ | ||
+ | and a $ \delta > 0 $ | ||
+ | such that $ A \cap ( z + \left ] 0, \delta \right ] C ) = \emptyset $. | ||
− | Among the great number of applications is the celebrated Bröndsted–Rockafellar theorem in [[Convex analysis|convex analysis]] [[#References|[a6]]]. Let | + | Among the great number of applications is the celebrated Bröndsted–Rockafellar theorem in [[Convex analysis|convex analysis]] [[#References|[a6]]]. Let $ f $ |
+ | be a closed convex function defined on a real Banach space $ ( X, \| \cdot \| ) $ | ||
+ | with values in $ \mathbf R \cup \{ + \infty \} $( | ||
+ | cf. also [[Convex function (of a real variable)|Convex function (of a real variable)]]). Let $ x _ {0} \in { \mathop{\rm dom} } f = \{ {x \in X } : {f ( x ) < + \infty } \} $, | ||
+ | $ \epsilon > 0 $, | ||
+ | and let $ {\mathcal l} _ {0} \in X ^ {*} $ | ||
+ | be such that $ f ( x ) \geq f ( x _ {0} ) + {\mathcal l} _ {0} ( x - x _ {0} ) - \epsilon $ | ||
+ | for all $ x \in X $. | ||
+ | One can apply the third version of the theorem, with $ \gamma = \sqrt \epsilon $, | ||
+ | to the function $ g = f - {\mathcal l} _ {0} $ | ||
+ | when endowing $ X $ | ||
+ | with the equivalent norm $ \| \cdot \| + | { {\mathcal l} ( \cdot ) } | $[[#References|[a4]]]. This yields the existence of an $ x _ \epsilon \in X $ | ||
+ | and an | ||
− | + | $$ | |
+ | {\mathcal l} _ \epsilon \in \partial f ( x _ \epsilon ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | \left \{ { {\mathcal l} \in X ^ {*} } : {f ( x ) \geq f ( x _ \epsilon ) + {\mathcal l} ( x - x _ \epsilon ) \textrm{ for all } x \in X } \right \} | ||
+ | $$ | ||
such that | such that | ||
− | + | $$ | |
+ | \left \| {x _ \epsilon - x _ {0} } \right \| \leq \sqrt \epsilon , | ||
+ | $$ | ||
− | + | $$ | |
+ | \left | {f ( x _ \epsilon ) - f ( x _ {0} ) } \right | \leq 2 \epsilon + \sqrt \epsilon . | ||
+ | $$ | ||
Hence the set | Hence the set | ||
− | + | $$ | |
+ | { \mathop{\rm dom} } \partial f = \left \{ {x \in { \mathop{\rm dom} } f } : {\partial f ( x ) \neq \emptyset } \right \} | ||
+ | $$ | ||
− | is dense in | + | is dense in $ { \mathop{\rm dom} } f $ |
+ | for the epigraph topology, i.e. the supremum of the norm topology on $ X $ | ||
+ | and of the initial topology associated to $ f $. | ||
Another easy consequence of the Ekeland variational principle is a generalization to multi-functions of the Kirk–Caristi fixed-point theorem [[#References|[a2]]]. | Another easy consequence of the Ekeland variational principle is a generalization to multi-functions of the Kirk–Caristi fixed-point theorem [[#References|[a2]]]. | ||
− | Finally, it should be mentioned that analogous results hold in Banach spaces with the perturbation | + | Finally, it should be mentioned that analogous results hold in Banach spaces with the perturbation $ d ( a, \cdot ) $ |
+ | replaced by some smooth one [[#References|[a5]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Attouch, H. Riahi, "Stability results for the Ekeland's variational principle and cone extremal solutions" ''Math. Oper. Res.'' , '''18''' (1993) pp. 173–201</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.-P. Aubin, I. Ekeland, "Applied nonlinear analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Bishop, R.R. Phelps, "The support functional of a convex set" P. Klee (ed.) , ''Convexity'' , ''Proc. Symp. Pure Math.'' , '''7''' , Amer. Math. Soc. (1963) pp. 27–35</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.M. Borwein, "A note on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003064.png" />-subgradients and maximal monotonicity" ''Pacific J. Math.'' , '''103''' (1982) pp. 307–314</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J.M. Borwein, R. Preiss, "Smooth variational principle" ''Trans. Amer. Math. Soc.'' , '''303''' (1987) pp. 517–527</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Bröndsted, R.T. Rockafellar, "On the subdifferentiability of convex functions" ''Proc. Amer. Math. Soc.'' , '''16''' (1965) pp. 605–611</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> F.H. Clarke, "Optimization and nonsmooth analysis" , Wiley (1983)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J. Daneš, "A geometric theorem useful in nonlinear functional analysis" ''Boll. Un. Mat. Ital.'' , '''4''' (1972) pp. 369–375</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> D.G. de Figueiredo, "The Ekeland variational principle, tours and detours" , ''Lecture Notes Tata Inst.'' , Springer (1989)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> I. Ekeland, "On the variational principle" ''J. Math. Anal. Appl.'' , '''47''' (1974) pp. 324–353</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> I. Ekeland, "Nonconvex minimization problems" ''Bull. Amer. Math. Soc. (N.S.)'' , '''1''' (1979) pp. 443–474</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> J.-P. Penot, "The drop theorem, the petal theorem and Ekeland's variational principle" ''Nonlinear Anal.: Theory, Methods, Appl.'' , '''10''' (1986) pp. 813–822</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> J.S. Treiman, "Characterization of Clarke's tangent and normal cones in finite and infinite dimensions" ''Nonlinear Anal.: Theory, Methods, Appl.'' , '''7''' (1983) pp. 771–783</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> J.D. Weston, "A characterization of metric completeness" ''Proc. Amer. Math. Soc.'' , '''64''' (1977) pp. 186–188</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Attouch, H. Riahi, "Stability results for the Ekeland's variational principle and cone extremal solutions" ''Math. Oper. Res.'' , '''18''' (1993) pp. 173–201</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.-P. Aubin, I. Ekeland, "Applied nonlinear analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E. Bishop, R.R. Phelps, "The support functional of a convex set" P. Klee (ed.) , ''Convexity'' , ''Proc. Symp. Pure Math.'' , '''7''' , Amer. Math. Soc. (1963) pp. 27–35</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.M. Borwein, "A note on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e110/e110030/e11003064.png" />-subgradients and maximal monotonicity" ''Pacific J. Math.'' , '''103''' (1982) pp. 307–314</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J.M. Borwein, R. Preiss, "Smooth variational principle" ''Trans. Amer. Math. Soc.'' , '''303''' (1987) pp. 517–527</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Bröndsted, R.T. Rockafellar, "On the subdifferentiability of convex functions" ''Proc. Amer. Math. Soc.'' , '''16''' (1965) pp. 605–611</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> F.H. Clarke, "Optimization and nonsmooth analysis" , Wiley (1983)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J. Daneš, "A geometric theorem useful in nonlinear functional analysis" ''Boll. Un. Mat. Ital.'' , '''4''' (1972) pp. 369–375</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> D.G. de Figueiredo, "The Ekeland variational principle, tours and detours" , ''Lecture Notes Tata Inst.'' , Springer (1989)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> I. Ekeland, "On the variational principle" ''J. Math. Anal. Appl.'' , '''47''' (1974) pp. 324–353</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> I. Ekeland, "Nonconvex minimization problems" ''Bull. Amer. Math. Soc. (N.S.)'' , '''1''' (1979) pp. 443–474</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> J.-P. Penot, "The drop theorem, the petal theorem and Ekeland's variational principle" ''Nonlinear Anal.: Theory, Methods, Appl.'' , '''10''' (1986) pp. 813–822</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> J.S. Treiman, "Characterization of Clarke's tangent and normal cones in finite and infinite dimensions" ''Nonlinear Anal.: Theory, Methods, Appl.'' , '''7''' (1983) pp. 771–783</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> J.D. Weston, "A characterization of metric completeness" ''Proc. Amer. Math. Soc.'' , '''64''' (1977) pp. 186–188</TD></TR></table> |
Latest revision as of 19:37, 5 June 2020
There are usually three ways for getting existence results in analysis, namely compactness, Hahn–Banach-type results and completeness properties (cf. Compactness; Hahn–Banach theorem; Completeness (in topology)). The Ekeland variational principle [a10] (which provides a characterization of complete metric spaces [a14], cf. also Complete metric space) illustrates the third method in the framework of optimization. Let $ f $
be a lower semi-continuous function defined on a complete metric space $ ( X,d ) $,
with values in the extended line $ \mathbf R \cup \{ + \infty \} $,
and bounded from below. It is well known that the lower bound of $ f $
over $ X $
need not be attained. Ekeland's basic principle asserts that there exists a slight perturbation of $ f $
which attains its minimum on $ X $.
More precisely, there exists a point $ a \in X $
such that $ f ( a ) < f ( x ) + d ( a,x ) $
for all $ x \in X \setminus \{ a \} $;
this says that the function $ f ( \cdot ) + d ( a, \cdot ) $
has a strict minimum on $ X $
at $ a $.
It is interesting to observe that the conclusion of the basic principle is equivalent to the existence of a maximal element in the epigraph $ { \mathop{\rm epi} } f = \{ {( x,r ) \in X \times \mathbf R } : {f ( x ) \leq r } \} $
for the order defined on $ X \times \mathbf R $
by $ ( x _ {1} ,r _ {1} ) \cle ( x _ {2} ,r _ {2} ) $
if and only if $ r _ {2} - r _ {1} + d ( x _ {2} ,x _ {1} ) \leq 0 $[a3].
Figure: e110030a
From this basic principle one can deduce some variants which are in fact equivalent to the basic statement. The first one is as follows: given $ \epsilon > 0 $, $ x _ {0} \in X $ such that $ f ( x _ {0} ) < \inf _ {x \in X } f ( x ) + \epsilon $ and applying the basic principle to the complete metric space $ {\widetilde{X} } = \{ {z \in X } : {f ( z ) + d ( x _ {0} ,z ) \leq f ( x _ {0} ) } \} $, one obtains the existence of a point $ a \in X $ such that $ f ( a ) + d ( a,x _ {0} ) \leq f ( x _ {0} ) $ and $ f ( a ) < f ( x ) + d ( a,x ) $ for all $ x \in X \setminus \{ a \} $. In particular, this implies that $ | {f ( a ) - f ( x _ {0} ) } | \leq \epsilon $. Applying the previous result with the metric $ \gamma d $, $ \gamma > 0 $, yields the second variant: there exists an $ a \in X $ such that
$$ d ( a,x _ {0} ) \leq \gamma ^ {- 1 } \epsilon, $$
$$ \left | {f ( a ) - f ( x _ {0} ) } \right | \leq \epsilon, $$
$$ f ( a ) < f ( x ) + \gamma d ( a,x ) \textrm{ for all } x \in X \setminus \{ a \} . $$
This variational principle has several equivalent geometric formulations. For instance, the Phelps extremization principle and the Drop theorem [a7], [a12] (see [a13] for the versions as stated here). Let $ A $ be a closed subset of a Banach space $ X $, let $ x \in A $ and let $ C $ be a closed convex bounded subset of $ X $ such that $ A \cap ( x + C ) = \emptyset $. Then there exist a $ z \in A \cap ( x + [ 0,1 ] C ) $ and a $ \delta > 0 $ such that $ A \cap ( z + \left ] 0, \delta \right ] C ) = \emptyset $.
Among the great number of applications is the celebrated Bröndsted–Rockafellar theorem in convex analysis [a6]. Let $ f $ be a closed convex function defined on a real Banach space $ ( X, \| \cdot \| ) $ with values in $ \mathbf R \cup \{ + \infty \} $( cf. also Convex function (of a real variable)). Let $ x _ {0} \in { \mathop{\rm dom} } f = \{ {x \in X } : {f ( x ) < + \infty } \} $, $ \epsilon > 0 $, and let $ {\mathcal l} _ {0} \in X ^ {*} $ be such that $ f ( x ) \geq f ( x _ {0} ) + {\mathcal l} _ {0} ( x - x _ {0} ) - \epsilon $ for all $ x \in X $. One can apply the third version of the theorem, with $ \gamma = \sqrt \epsilon $, to the function $ g = f - {\mathcal l} _ {0} $ when endowing $ X $ with the equivalent norm $ \| \cdot \| + | { {\mathcal l} ( \cdot ) } | $[a4]. This yields the existence of an $ x _ \epsilon \in X $ and an
$$ {\mathcal l} _ \epsilon \in \partial f ( x _ \epsilon ) = $$
$$ = \left \{ { {\mathcal l} \in X ^ {*} } : {f ( x ) \geq f ( x _ \epsilon ) + {\mathcal l} ( x - x _ \epsilon ) \textrm{ for all } x \in X } \right \} $$
such that
$$ \left \| {x _ \epsilon - x _ {0} } \right \| \leq \sqrt \epsilon , $$
$$ \left | {f ( x _ \epsilon ) - f ( x _ {0} ) } \right | \leq 2 \epsilon + \sqrt \epsilon . $$
Hence the set
$$ { \mathop{\rm dom} } \partial f = \left \{ {x \in { \mathop{\rm dom} } f } : {\partial f ( x ) \neq \emptyset } \right \} $$
is dense in $ { \mathop{\rm dom} } f $ for the epigraph topology, i.e. the supremum of the norm topology on $ X $ and of the initial topology associated to $ f $.
Another easy consequence of the Ekeland variational principle is a generalization to multi-functions of the Kirk–Caristi fixed-point theorem [a2].
Finally, it should be mentioned that analogous results hold in Banach spaces with the perturbation $ d ( a, \cdot ) $ replaced by some smooth one [a5].
References
[a1] | H. Attouch, H. Riahi, "Stability results for the Ekeland's variational principle and cone extremal solutions" Math. Oper. Res. , 18 (1993) pp. 173–201 |
[a2] | J.-P. Aubin, I. Ekeland, "Applied nonlinear analysis" , Wiley (1984) |
[a3] | E. Bishop, R.R. Phelps, "The support functional of a convex set" P. Klee (ed.) , Convexity , Proc. Symp. Pure Math. , 7 , Amer. Math. Soc. (1963) pp. 27–35 |
[a4] | J.M. Borwein, "A note on -subgradients and maximal monotonicity" Pacific J. Math. , 103 (1982) pp. 307–314 |
[a5] | J.M. Borwein, R. Preiss, "Smooth variational principle" Trans. Amer. Math. Soc. , 303 (1987) pp. 517–527 |
[a6] | A. Bröndsted, R.T. Rockafellar, "On the subdifferentiability of convex functions" Proc. Amer. Math. Soc. , 16 (1965) pp. 605–611 |
[a7] | F.H. Clarke, "Optimization and nonsmooth analysis" , Wiley (1983) |
[a8] | J. Daneš, "A geometric theorem useful in nonlinear functional analysis" Boll. Un. Mat. Ital. , 4 (1972) pp. 369–375 |
[a9] | D.G. de Figueiredo, "The Ekeland variational principle, tours and detours" , Lecture Notes Tata Inst. , Springer (1989) |
[a10] | I. Ekeland, "On the variational principle" J. Math. Anal. Appl. , 47 (1974) pp. 324–353 |
[a11] | I. Ekeland, "Nonconvex minimization problems" Bull. Amer. Math. Soc. (N.S.) , 1 (1979) pp. 443–474 |
[a12] | J.-P. Penot, "The drop theorem, the petal theorem and Ekeland's variational principle" Nonlinear Anal.: Theory, Methods, Appl. , 10 (1986) pp. 813–822 |
[a13] | J.S. Treiman, "Characterization of Clarke's tangent and normal cones in finite and infinite dimensions" Nonlinear Anal.: Theory, Methods, Appl. , 7 (1983) pp. 771–783 |
[a14] | J.D. Weston, "A characterization of metric completeness" Proc. Amer. Math. Soc. , 64 (1977) pp. 186–188 |
Ekeland variational principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ekeland_variational_principle&oldid=46797