Namespaces
Variants
Actions

Difference between revisions of "Double-periodic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Functions of a complex variable)
m (tex encoded by computer)
 
Line 1: Line 1:
A single-valued analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339301.png" /> with only isolated singularities on the entire finite complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339302.png" />-plane, and such that there exists two numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339303.png" /> whose quotient is not a real number and which are periods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339304.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339305.png" /> are such that the identity
+
<!--
 +
d0339301.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/D033/D.0303930 Double\AAhperiodic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339306.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is valid. (If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339307.png" /> is real and rational, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339308.png" /> is a simply-periodic function; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d0339309.png" /> is real and irrational, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393010.png" />.) All numbers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393011.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393012.png" /> are integers are also periods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393013.png" />. All periods of a given double-periodic function form a discrete Abelian group with respect to addition, known as the period group (or the period module), a basis of which (a period basis) is constituted by two primitive periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393015.png" />. All remaining periods of this double-periodic function may be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393016.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393017.png" /> are integers. Analytic functions of one complex variable with more than two primitive periods do not exist, except for constants.
+
A single-valued analytic function  $  f ( z) $
 +
with only isolated singularities on the entire finite complex  $  z $-
 +
plane, and such that there exists two numbers  $  p _ {1} , p _ {2} $
 +
whose quotient is not a real number and which are periods of $  f ( z) $,  
 +
i.e. $  p _ {1} , p _ {2} $
 +
are such that the identity
  
The points of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393018.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393019.png" /> are integers form the period lattice (subdividing the entire <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393020.png" />-plane into period parallelograms). Points (numbers) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393022.png" /> for which
+
$$
 +
f ( z + p _ {1} )  = f ( z + p _ {2} )  = f ( z)
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393023.png" /></td> </tr></table>
+
is valid. (If  $  p _ {1} / p _ {2} $
 +
is real and rational,  $  f ( z) $
 +
is a simply-periodic function; if  $  p _ {1} / p _ {2} $
 +
is real and irrational,  $  f ( z) \equiv \textrm{ const } $.)
 +
All numbers of the form  $  mp _ {1} + np _ {2} $
 +
where  $  m, n $
 +
are integers are also periods of  $  f ( z) $.
 +
All periods of a given double-periodic function form a discrete Abelian group with respect to addition, known as the period group (or the period module), a basis of which (a period basis) is constituted by two primitive periods  $  2 \omega _ {1} , 2 \omega _ {3} $,
 +
$  \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 $.  
 +
All remaining periods of this double-periodic function may be represented in the form  $  2 m \omega _ {1} + 2 n \omega _ {3} $
 +
where  $  m , n $
 +
are integers. Analytic functions of one complex variable with more than two primitive periods do not exist, except for constants.
  
are said to be congruent (comparable with respect to the period module). At congruent points the double-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393024.png" /> assumes the same value, so that it is sufficient to study the behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393025.png" /> in some basic period parallelogram. This is usually the set of points
+
The points of the form  $  2m \omega _ {1} + 2n \omega _ {3} $
 +
where  $  m, n $
 +
are integers form the period lattice (subdividing the entire  $  z $-
 +
plane into period parallelograms). Points (numbers)  $  z _ {1} $,  
 +
$  z _ {2} $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393026.png" /></td> </tr></table>
+
$$
 +
z _ {1} - z _ {2}  = 2m \omega _ {1} + 2n \omega _ {3} ,
 +
$$
 +
 
 +
are said to be congruent (comparable with respect to the period module). At congruent points the double-periodic function  $  f ( z) $
 +
assumes the same value, so that it is sufficient to study the behaviour of  $  f ( z) $
 +
in some basic period parallelogram. This is usually the set of points
 +
 
 +
$$
 +
\{ {z  = z _ {0} + 2t _ {1} \omega _ {1} + 2t _ {3} \omega _ {3} } : {
 +
0 \leq  t _ {1} < 1 , 0 \leq  t _ {3} < 1 } \}
 +
,
 +
$$
  
 
i.e. the parallelogram with vertices
 
i.e. the parallelogram with vertices
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393027.png" /></td> </tr></table>
+
$$
 +
z _ {0,\ } z _ {0} + 2 \omega _ {1} , z _ {0} + 2 \omega _ {2}  = \
 +
z _ {0} + 2 \omega _ {1} + 2 \omega _ {3} ,\
 +
z _ {0} + 2 \omega _ {3} .
 +
$$
  
A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. [[Elliptic function|Elliptic function]]). The generalization of the concept of an elliptic function to include functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033930/d03393029.png" /> complex variables are called Abelian functions (cf. [[Abelian function|Abelian function]]).
+
A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. [[Elliptic function|Elliptic function]]). The generalization of the concept of an elliptic function to include functions $  f ( z _ {1} \dots z _ {n} ) $
 +
of $  n \geq  1 $
 +
complex variables are called Abelian functions (cf. [[Abelian function|Abelian function]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1968) {{MR|1535615}} {{MR|0173749}} {{MR|0011320}} {{ZBL|0945.30001}} {{ZBL|0135.12101}} {{ZBL|55.0171.01}} {{ZBL|51.0236.12}} {{ZBL|48.1207.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , '''2''' , Cambridge Univ. Press (1952) pp. Chapt. 20 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) {{MR|1054205}} {{ZBL|0694.33001}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1968) {{MR|1535615}} {{MR|0173749}} {{MR|0011320}} {{ZBL|0945.30001}} {{ZBL|0135.12101}} {{ZBL|55.0171.01}} {{ZBL|51.0236.12}} {{ZBL|48.1207.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , '''2''' , Cambridge Univ. Press (1952) pp. Chapt. 20 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) {{MR|1054205}} {{ZBL|0694.33001}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====

Latest revision as of 19:36, 5 June 2020


A single-valued analytic function $ f ( z) $ with only isolated singularities on the entire finite complex $ z $- plane, and such that there exists two numbers $ p _ {1} , p _ {2} $ whose quotient is not a real number and which are periods of $ f ( z) $, i.e. $ p _ {1} , p _ {2} $ are such that the identity

$$ f ( z + p _ {1} ) = f ( z + p _ {2} ) = f ( z) $$

is valid. (If $ p _ {1} / p _ {2} $ is real and rational, $ f ( z) $ is a simply-periodic function; if $ p _ {1} / p _ {2} $ is real and irrational, $ f ( z) \equiv \textrm{ const } $.) All numbers of the form $ mp _ {1} + np _ {2} $ where $ m, n $ are integers are also periods of $ f ( z) $. All periods of a given double-periodic function form a discrete Abelian group with respect to addition, known as the period group (or the period module), a basis of which (a period basis) is constituted by two primitive periods $ 2 \omega _ {1} , 2 \omega _ {3} $, $ \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 $. All remaining periods of this double-periodic function may be represented in the form $ 2 m \omega _ {1} + 2 n \omega _ {3} $ where $ m , n $ are integers. Analytic functions of one complex variable with more than two primitive periods do not exist, except for constants.

The points of the form $ 2m \omega _ {1} + 2n \omega _ {3} $ where $ m, n $ are integers form the period lattice (subdividing the entire $ z $- plane into period parallelograms). Points (numbers) $ z _ {1} $, $ z _ {2} $ for which

$$ z _ {1} - z _ {2} = 2m \omega _ {1} + 2n \omega _ {3} , $$

are said to be congruent (comparable with respect to the period module). At congruent points the double-periodic function $ f ( z) $ assumes the same value, so that it is sufficient to study the behaviour of $ f ( z) $ in some basic period parallelogram. This is usually the set of points

$$ \{ {z = z _ {0} + 2t _ {1} \omega _ {1} + 2t _ {3} \omega _ {3} } : { 0 \leq t _ {1} < 1 , 0 \leq t _ {3} < 1 } \} , $$

i.e. the parallelogram with vertices

$$ z _ {0,\ } z _ {0} + 2 \omega _ {1} , z _ {0} + 2 \omega _ {2} = \ z _ {0} + 2 \omega _ {1} + 2 \omega _ {3} ,\ z _ {0} + 2 \omega _ {3} . $$

A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. Elliptic function). The generalization of the concept of an elliptic function to include functions $ f ( z _ {1} \dots z _ {n} ) $ of $ n \geq 1 $ complex variables are called Abelian functions (cf. Abelian function).

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) MR0444912 Zbl 0357.30002
[2] A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1968) MR1535615 MR0173749 MR0011320 Zbl 0945.30001 Zbl 0135.12101 Zbl 55.0171.01 Zbl 51.0236.12 Zbl 48.1207.01
[3] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , 2 , Cambridge Univ. Press (1952) pp. Chapt. 20 MR1424469 MR0595076 MR0178117 MR1519757 Zbl 0951.30002 Zbl 0108.26903 Zbl 0105.26901 Zbl 53.0180.04 Zbl 47.0190.17 Zbl 45.0433.02 Zbl 33.0390.01
[4] N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) MR1054205 Zbl 0694.33001

Comments

References

[a1] S. Lang, "Elliptic functions" , Addison-Wesley (1973) MR0409362 Zbl 0316.14001
How to Cite This Entry:
Double-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Double-periodic_function&oldid=46767
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article