Difference between revisions of "Defective value"
(MSC 30D35) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0306201.png | ||
+ | $#A+1 = 44 n = 0 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/D030/D.0300620 Defective value | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
{{MSC|30D35}} | {{MSC|30D35}} | ||
− | ''of a meromorphic function | + | ''of a meromorphic function $ f $'' |
− | A complex number | + | A complex number $ a $( |
+ | finite or infinite) whose defect $ \delta ( a , f ) $( | ||
+ | see below) is positive. Let the function $ f $ | ||
+ | be defined in the disc $ | z | < R \leq \infty $ | ||
+ | of the complex plane $ \mathbf C $. | ||
+ | The defect (or deficiency) of the value $ a $ | ||
+ | is | ||
− | + | $$ | |
+ | \delta ( a , f ) = 1 - \overline{\lim\limits}\; _ {r \rightarrow R } \ | ||
− | + | \frac{N ( r , a , f ) }{T ( r , f ) } | |
+ | , | ||
+ | $$ | ||
− | + | where $ T ( r , f ) $ | |
+ | is Nevanlinna's characteristic function representing the growth of $ f $ | ||
+ | for $ r \rightarrow R $, | ||
+ | and | ||
− | is the counting function; here, | + | $$ |
+ | N ( r , a , f ) = \int\limits _ { 0 } ^ { r } [ n ( t , a ) - n | ||
+ | ( 0 , a ) ] d \mathop{\rm ln} t + n ( 0 , a ) \mathop{\rm ln} r | ||
+ | $$ | ||
+ | |||
+ | is the counting function; here, $ n ( t , a ) $ | ||
+ | is the number of solutions of the equation $ f ( z) = a $ | ||
+ | in $ | z | \leq t $( | ||
+ | counted with multiplicity). If $ T ( r) \rightarrow \infty $ | ||
+ | as $ r \rightarrow R $, | ||
+ | then $ 0 \leq \delta ( a , f ) \leq 1 $ | ||
+ | for all $ a \in \mathbf C \cup \{ \infty \} $. | ||
+ | If $ f ( z) \neq a $ | ||
+ | for any $ z $, | ||
+ | then $ \delta ( a , f )= 1 $ | ||
+ | and $ a $ | ||
+ | is a defective value; this equality also holds in some other cases (e.g. $ f ( z) = ze ^ {z} $, | ||
+ | $ R = \infty $ | ||
+ | and $ a = 0 $). | ||
If | If | ||
− | + | $$ | |
+ | \overline{\lim\limits}\; | ||
+ | \frac{T ( r , f ) }{ \mathop{\rm ln} ( 1 / ( R | ||
+ | - r ) ) } | ||
+ | = \infty | ||
+ | $$ | ||
− | (or | + | (or $ f \not\equiv \textrm{ const } $ |
+ | is meromorphic throughout the plane), then $ \sum _ {a} \delta ( a , f ) \leq 2 $( | ||
+ | the defect, or deficiency, relation), and the number of defective values for such $ f $ | ||
+ | is at most countable. Otherwise, the set of defective values may be arbitrary; thus, for any sequences $ \{ a _ \nu \} \subset \mathbf C $ | ||
+ | and $ \{ \delta _ \nu \} \subset \mathbf R ^ {+} $, | ||
+ | $ \sum _ \nu \delta _ \nu \leq 1 $, | ||
+ | it is possible to find an entire function $ f $ | ||
+ | such that $ \delta ( a _ \nu , f ) = \delta _ \nu $ | ||
+ | for all $ \nu $ | ||
+ | and there are no other defective values of $ f $. | ||
+ | Limitations imposed on the growth of $ f $ | ||
+ | entail limitations on the defective values and their defects. For instance, a meromorphic function of order zero or an entire function of order $ < 1 / 2 $ | ||
+ | cannot have more than one defective value. | ||
The number | The number | ||
− | + | $$ | |
+ | \Delta ( a , f ) = 1 - \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \ | ||
+ | |||
+ | \frac{N ( r , a , f ) }{T ( r , f ) } | ||
+ | |||
+ | $$ | ||
− | ( | + | ( $ f $ |
+ | meromorphic in $ \mathbf C $) | ||
+ | is known as the defect in the sense of Valiron. The set of numbers $ a $ | ||
+ | for which $ \Delta ( a , f ) > 0 $ | ||
+ | may have the cardinality of the continuum, but always has logarithmic capacity zero. | ||
See also [[Exceptional value|Exceptional value]]; [[Value-distribution theory|Value-distribution theory]]. | See also [[Exceptional value|Exceptional value]]; [[Value-distribution theory|Value-distribution theory]]. |
Latest revision as of 17:32, 5 June 2020
2020 Mathematics Subject Classification: Primary: 30D35 [MSN][ZBL]
of a meromorphic function $ f $
A complex number $ a $( finite or infinite) whose defect $ \delta ( a , f ) $( see below) is positive. Let the function $ f $ be defined in the disc $ | z | < R \leq \infty $ of the complex plane $ \mathbf C $. The defect (or deficiency) of the value $ a $ is
$$ \delta ( a , f ) = 1 - \overline{\lim\limits}\; _ {r \rightarrow R } \ \frac{N ( r , a , f ) }{T ( r , f ) } , $$
where $ T ( r , f ) $ is Nevanlinna's characteristic function representing the growth of $ f $ for $ r \rightarrow R $, and
$$ N ( r , a , f ) = \int\limits _ { 0 } ^ { r } [ n ( t , a ) - n ( 0 , a ) ] d \mathop{\rm ln} t + n ( 0 , a ) \mathop{\rm ln} r $$
is the counting function; here, $ n ( t , a ) $ is the number of solutions of the equation $ f ( z) = a $ in $ | z | \leq t $( counted with multiplicity). If $ T ( r) \rightarrow \infty $ as $ r \rightarrow R $, then $ 0 \leq \delta ( a , f ) \leq 1 $ for all $ a \in \mathbf C \cup \{ \infty \} $. If $ f ( z) \neq a $ for any $ z $, then $ \delta ( a , f )= 1 $ and $ a $ is a defective value; this equality also holds in some other cases (e.g. $ f ( z) = ze ^ {z} $, $ R = \infty $ and $ a = 0 $).
If
$$ \overline{\lim\limits}\; \frac{T ( r , f ) }{ \mathop{\rm ln} ( 1 / ( R - r ) ) } = \infty $$
(or $ f \not\equiv \textrm{ const } $ is meromorphic throughout the plane), then $ \sum _ {a} \delta ( a , f ) \leq 2 $( the defect, or deficiency, relation), and the number of defective values for such $ f $ is at most countable. Otherwise, the set of defective values may be arbitrary; thus, for any sequences $ \{ a _ \nu \} \subset \mathbf C $ and $ \{ \delta _ \nu \} \subset \mathbf R ^ {+} $, $ \sum _ \nu \delta _ \nu \leq 1 $, it is possible to find an entire function $ f $ such that $ \delta ( a _ \nu , f ) = \delta _ \nu $ for all $ \nu $ and there are no other defective values of $ f $. Limitations imposed on the growth of $ f $ entail limitations on the defective values and their defects. For instance, a meromorphic function of order zero or an entire function of order $ < 1 / 2 $ cannot have more than one defective value.
The number
$$ \Delta ( a , f ) = 1 - \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \ \frac{N ( r , a , f ) }{T ( r , f ) } $$
( $ f $ meromorphic in $ \mathbf C $) is known as the defect in the sense of Valiron. The set of numbers $ a $ for which $ \Delta ( a , f ) > 0 $ may have the cardinality of the continuum, but always has logarithmic capacity zero.
See also Exceptional value; Value-distribution theory.
References
[1] | R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German) |
[2] | W.K. Hayman, "Meromorphic functions" , Oxford Univ. Press (1964) |
[3] | A.A. Gol'dberg, I.V. Ostrovskii, "Value distribution of meromorphic functions" , Moscow (1970) (In Russian) |
Defective value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defective_value&oldid=46602