Difference between revisions of "Conformal Euclidean space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0247501.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/C024/C.0204750 Conformal Euclidean space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form | A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form | ||
− | + | $$ \tag{* } | |
+ | R _ {ijk.} ^ {l} = \ | ||
+ | 2T _ {..k[i } ^ {lm} p _ {j]m } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | T _ {..ij} ^ {km} = \ | ||
+ | \delta _ {i} ^ {k} | ||
+ | \delta _ {j} ^ {m} + | ||
+ | \delta _ {j} ^ {k} | ||
+ | \delta _ {i} ^ {m} - | ||
+ | g ^ {km} g _ {ij} , | ||
+ | $$ | ||
− | + | $$ | |
+ | p _ {ij} = \nabla _ {i} p _ {j} - { | ||
+ | \frac{1}{2} | ||
+ | } T _ {..ij } ^ {km} p _ {k} p _ {m} . | ||
+ | $$ | ||
− | For | + | For $ n = 2 $, |
+ | every $ V _ {n} $ | ||
+ | is a conformal Euclidean space. In order that a space with $ n > 3 $ | ||
+ | be a conformal Euclidean space, it is necessary and sufficient that there exist a tensor $ p _ {ij} $ | ||
+ | satisfying the conditions (*) and $ \nabla _ {[k } p _ {i]j } = 0 $. | ||
+ | Sometimes a conformal Euclidean space is called a Weyl space admitting a conformal mapping onto a Euclidean space (see [[#References|[2]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1935)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1935)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let | + | The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let $ M $ |
+ | be an $ n $- | ||
+ | dimensional [[Riemannian space|Riemannian space]] with [[Riemannian metric|Riemannian metric]] $ g $, | ||
+ | Levi-Civita derivation (cf. [[Levi-Civita connection|Levi-Civita connection]]) $ D $, | ||
+ | [[Curvature tensor|curvature tensor]] $ R $, | ||
+ | Ricci transformation (cf. [[Ricci tensor|Ricci tensor]]) $ \mathop{\rm Ric} $, | ||
+ | and [[Scalar curvature|scalar curvature]] $ K $. | ||
+ | Then the conformal curvature tensor $ C $( | ||
+ | Weyl's curvature tensor) is defined by | ||
− | + | $$ | |
+ | C ( X, Y) Z = \ | ||
+ | R ( X, Y) Z - | ||
+ | ( X \wedge Y) | ||
+ | ( L ( Z)) - | ||
+ | L (( X \wedge Y) ( Z)) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | L ( W) = \ | ||
+ | { | ||
+ | \frac{1}{n - 2 } | ||
+ | } | ||
+ | \mathop{\rm Ric} ( W) - | ||
+ | |||
+ | \frac{K}{2 ( n - 1) ( n - 2) } | ||
+ | W | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | ( X \wedge Y) ( W) = \ | ||
+ | g ( Y, W) X - g ( X, W) Y. | ||
+ | $$ | ||
− | Then | + | Then $ M $ |
+ | locally admits a conformal mapping onto some open set of $ E ^ {n} $ | ||
+ | if and only if | ||
− | 1) | + | 1) $ C = 0 $ |
+ | for $ n > 3 $; | ||
+ | or | ||
− | 2) | + | 2) $ C = 0 $ |
+ | and $ ( D _ {X} L) ( Y) = ( D _ {Y} L) ( X) $ | ||
+ | for $ n = 3 $. | ||
− | (See [[#References|[a1]]] for example; for | + | (See [[#References|[a1]]] for example; for $ n > 3 $ |
+ | the "Codazzi equationCodazzi equation" for $ L $ | ||
+ | is satisfied automatically.) The coordinate expressions for the equations given above can be found in the book of J.A. Schouten [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form
$$ \tag{* } R _ {ijk.} ^ {l} = \ 2T _ {..k[i } ^ {lm} p _ {j]m } , $$
where
$$ T _ {..ij} ^ {km} = \ \delta _ {i} ^ {k} \delta _ {j} ^ {m} + \delta _ {j} ^ {k} \delta _ {i} ^ {m} - g ^ {km} g _ {ij} , $$
$$ p _ {ij} = \nabla _ {i} p _ {j} - { \frac{1}{2} } T _ {..ij } ^ {km} p _ {k} p _ {m} . $$
For $ n = 2 $, every $ V _ {n} $ is a conformal Euclidean space. In order that a space with $ n > 3 $ be a conformal Euclidean space, it is necessary and sufficient that there exist a tensor $ p _ {ij} $ satisfying the conditions (*) and $ \nabla _ {[k } p _ {i]j } = 0 $. Sometimes a conformal Euclidean space is called a Weyl space admitting a conformal mapping onto a Euclidean space (see [2]).
References
[1] | J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , 2 , Noordhoff (1935) |
[2] | A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) |
Comments
The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let $ M $ be an $ n $- dimensional Riemannian space with Riemannian metric $ g $, Levi-Civita derivation (cf. Levi-Civita connection) $ D $, curvature tensor $ R $, Ricci transformation (cf. Ricci tensor) $ \mathop{\rm Ric} $, and scalar curvature $ K $. Then the conformal curvature tensor $ C $( Weyl's curvature tensor) is defined by
$$ C ( X, Y) Z = \ R ( X, Y) Z - ( X \wedge Y) ( L ( Z)) - L (( X \wedge Y) ( Z)) , $$
where
$$ L ( W) = \ { \frac{1}{n - 2 } } \mathop{\rm Ric} ( W) - \frac{K}{2 ( n - 1) ( n - 2) } W $$
and
$$ ( X \wedge Y) ( W) = \ g ( Y, W) X - g ( X, W) Y. $$
Then $ M $ locally admits a conformal mapping onto some open set of $ E ^ {n} $ if and only if
1) $ C = 0 $ for $ n > 3 $; or
2) $ C = 0 $ and $ ( D _ {X} L) ( Y) = ( D _ {Y} L) ( X) $ for $ n = 3 $.
(See [a1] for example; for $ n > 3 $ the "Codazzi equationCodazzi equation" for $ L $ is satisfied automatically.) The coordinate expressions for the equations given above can be found in the book of J.A. Schouten [a2].
References
[a1] | K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957) |
[a2] | J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German) |
Conformal Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conformal_Euclidean_space&oldid=46452