Difference between revisions of "Comparison theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0236401.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/C023/C.0203640 Comparison theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''in the theory of differential equations'' | ''in the theory of differential equations'' | ||
Line 4: | Line 16: | ||
==Examples of comparison theorems.== | ==Examples of comparison theorems.== | ||
− | |||
1) Sturm's theorem: Any non-trivial solution of the equation | 1) Sturm's theorem: Any non-trivial solution of the equation | ||
− | + | $$ | |
+ | \dot{y} dot + p ( t) y = 0,\ \ | ||
+ | p ( \cdot ) \in C [ t _ {0} , t _ {1} ] , | ||
+ | $$ | ||
− | vanishes on the segment | + | vanishes on the segment $ [ t _ {0} , t _ {1} ] $ |
+ | at most $ m $ | ||
+ | times $ ( m \geq 1) $ | ||
+ | if the equation | ||
− | + | $$ | |
+ | \dot{z} dot + q ( t) z = 0,\ \ | ||
+ | q ( \cdot ) \in C [ t _ {0} , t _ {1} ] , | ||
+ | $$ | ||
− | possesses this property and | + | possesses this property and $ q ( t) \geq p ( t) $ |
+ | when $ t _ {0} \leq t \leq t _ {1} $( | ||
+ | see [[#References|[1]]]). | ||
2) A differential inequality: The solution of the problem | 2) A differential inequality: The solution of the problem | ||
− | + | $$ | |
+ | \dot{x} _ {i} = \ | ||
+ | f _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ | ||
+ | x _ {i} ( t _ {0} ) = \ | ||
+ | x _ {i} ^ {0} ,\ \ | ||
+ | i = 1 \dots n , | ||
+ | $$ | ||
− | is component-wise non-negative when | + | is component-wise non-negative when $ t \geq t _ {0} $ |
+ | if the solution of the problem | ||
− | + | $$ | |
+ | \dot{y} _ {i} = \ | ||
+ | g _ {i} ( t, y _ {1} \dots y _ {n} ),\ \ | ||
+ | y _ {i} ( t _ {0} ) = y _ {i} ^ {0} ,\ \ | ||
+ | i = 1 \dots n | ||
+ | $$ | ||
possesses this property and if the inequalities | possesses this property and if the inequalities | ||
− | + | $$ | |
+ | f _ {i} ( t, x _ {1} \dots x _ {n} ) \geq \ | ||
+ | g _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ | ||
+ | $$ | ||
− | + | $$ | |
+ | x _ {i} ^ {0} \geq y _ {i} ^ {0} ,\ i = 1 \dots n, | ||
+ | $$ | ||
− | + | $$ | |
+ | |||
+ | \frac{\partial f _ {i} }{\partial x _ {j} } | ||
+ | |||
+ | \geq 0,\ \ | ||
+ | i, j = 1 \dots n,\ i \neq j, | ||
+ | $$ | ||
are fulfilled (see [[#References|[2]]]). | are fulfilled (see [[#References|[2]]]). | ||
Line 38: | Line 83: | ||
One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [[#References|[4]]]–[[#References|[7]]]). The idea of the comparison principle is as follows. Let a system of differential equations | One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [[#References|[4]]]–[[#References|[7]]]). The idea of the comparison principle is as follows. Let a system of differential equations | ||
− | + | $$ \tag{1 } | |
+ | \dot{x} = f ( t, x),\ \ | ||
+ | x = ( x _ {1} \dots x _ {n} ) | ||
+ | $$ | ||
and vector functions | and vector functions | ||
− | + | $$ | |
+ | V ( t, x) = ( V _ {1} ( t, x) \dots V _ {m} ( t, x)), | ||
+ | $$ | ||
− | + | $$ | |
+ | W ( t, v) = ( W _ {1} ( t, v) \dots W _ {m} ( t, v)) | ||
+ | $$ | ||
− | be given, where | + | be given, where $ v = ( v _ {1} \dots v _ {m} ) $. |
+ | For any solution $ x ( t) $ | ||
+ | of the system (1), the function $ v _ {j} ( t) = V _ {j} ( t, x ( t)) $, | ||
+ | $ j = 1 \dots m $, | ||
+ | satisfies the equation | ||
− | + | $$ | |
+ | \dot{v} _ {j} ( t) = \ | ||
+ | |||
+ | \frac{\partial V _ {j} ( t, x ( t)) }{\partial t } | ||
+ | + | ||
+ | \sum _ {k = 1 } ^ { n } | ||
+ | |||
+ | \frac{\partial V _ {j} ( t, x ( t)) }{\partial x _ {k} } | ||
+ | |||
+ | f _ {k} ( t, x ( t)). | ||
+ | $$ | ||
Therefore, if the inequalities | Therefore, if the inequalities | ||
− | + | $$ \tag{2 } | |
− | + | \frac{\partial V _ {j} ( t, x) }{\partial t } | |
+ | + | ||
+ | \sum _ {k = 1 } ^ { n } | ||
+ | |||
+ | \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } | ||
+ | |||
+ | f _ {k} ( t, x) \leq \ | ||
+ | W _ {j} ( t, V ( t, x)), | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | j = 1 \dots m, | ||
+ | $$ | ||
are fulfilled, then on the basis of the properties of the system of differential inequalities | are fulfilled, then on the basis of the properties of the system of differential inequalities | ||
− | + | $$ \tag{3 } | |
+ | \dot{v} _ {j} \leq \ | ||
+ | W _ {j} ( t, v _ {1} \dots v _ {m} ),\ \ | ||
+ | j = 1 \dots m, | ||
+ | $$ | ||
+ | |||
+ | something can be said about the behaviour of the functions $ V _ {j} ( t, x ( t)) $ | ||
+ | that are solutions of the system (3). Knowing the behaviour of the functions $ V _ {j} ( t, x) $ | ||
+ | on every solution $ x ( t) $ | ||
+ | of the system (1), in turn, enables one to state assertions on the properties of the solutions of the system (1). | ||
+ | |||
+ | For example, let the vector functions $ V ( t, x) $ | ||
+ | and $ W ( t, v) $ | ||
+ | satisfy the inequalities (2) and for any $ t _ {1} \geq t _ {0} $, | ||
+ | $ \gamma > 0 $, | ||
+ | let a number $ M > 0 $ | ||
+ | exist such that | ||
+ | |||
+ | $$ | ||
+ | \sum _ {j = 1 } ^ { m } | ||
+ | | V _ {j} ( t, x) | | ||
+ | \geq M | ||
+ | $$ | ||
− | + | for all $ t \in [ t _ {0} , t _ {1} ] $, | |
+ | $ \| x \| \geq \gamma $. | ||
+ | Furthermore, let every solution of the system of inequalities (3) be defined on $ [ t, \infty ) $. | ||
+ | Every solution of the system (1) is then also defined on $ [ t, \infty ) $. | ||
− | + | A large number of interesting statements have been obtained on the basis of the comparison principle in the theory of the stability of motion (see [[#References|[4]]]–[[#References|[6]]]). The Lyapunov comparison principle with a vector function is successfully used for abstract differential equations, differential equations with distributed argument and differential inclusions (cf. [[Differential equation, abstract|Differential equation, abstract]]; [[Differential equations, ordinary, with distributed arguments|Differential equations, ordinary, with distributed arguments]]; [[Differential inclusion|Differential inclusion]]). In particular, for a differential inclusion $ \dot{x} \in F ( t, x) $, | |
+ | $ x \in \mathbf R ^ {n} $, | ||
+ | where $ F ( t, x) $ | ||
+ | is a set in $ \mathbf R ^ {n} $ | ||
+ | dependent on $ ( t, x) \in \mathbf R ^ {1} \times \mathbf R ^ {n} $, | ||
+ | the role of the inequalities (2) is played by the inequalities | ||
− | + | $$ | |
− | + | \frac{\partial V _ {j} ( t, x) }{\partial t } | |
+ | + | ||
+ | \sup _ {y \in F ( t, x) } \ | ||
+ | \sum _ {k = 1 } ^ { n } | ||
− | + | \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } | |
− | + | y _ {k} \leq \ | |
+ | W _ {j} ( t, V ( t, x)). | ||
+ | $$ | ||
A large number of comparison theorems are given in [[#References|[8]]]. | A large number of comparison theorems are given in [[#References|[8]]]. | ||
Line 76: | Line 189: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Sturm, ''J. Math. Pures Appl.'' , '''1''' (1836) pp. 106–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T. Waźewski, "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications" ''Ann. Soc. Polon. Math.'' , '''23''' (1950) pp. 112–166</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Bellman, "Vector Lyapunov functions" ''J. Soc. Industr. Appl. Math. Ser. A Control.'' , '''1''' : 1 (1962) pp. 32–34</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> V.M. Matrosov, "The comparison principle with a Lyapunov vector-function I" ''Differential Equations'' , '''4''' : 8 (1968) pp. 710–717 ''Differentsial'nye Uravneniya'' , '''4''' : 8 (1968) pp. 1374–1386</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> V.M. Matrosov, "Principle of comparison with the Lyapunov vector-functions II" ''Differential Equations'' , '''4''' : 10 (1968) pp. 893–900 ''Differentsial'nye Uravneniya'' , '''4''' : 10 (1968) pp. 1739–1752</TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top"> V.M. Matrosov, "Comparison principle with vector-valued Lyapunov functions III" ''Differential Equations'' , '''5''' : 7 (1969) pp. 853–864 ''Differentsial'nye Uravneniya'' , '''5''' : 7 (1969) pp. 1171–1185</TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top"> V.M. Matrosov, "The principle of comparison with a Lyapunov vector-function IV" ''Differential Equations'' , '''5''' : 12 (1969) pp. 1596–1607 ''Differentsial'nye Uravneniya'' , '''5''' : 12 (1969) pp. 2129–2143</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.A. Martynyuk, "Stability of motion of complex systems" , Kiev (1975) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.A. Martynyuk, R. Gutovski, "Integral inequalities and stability of motion" , Kiev (1979) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1–2''' , Akad. Verlagsgesell. (1943–1944)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Sturm, ''J. Math. Pures Appl.'' , '''1''' (1836) pp. 106–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T. Waźewski, "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications" ''Ann. Soc. Polon. Math.'' , '''23''' (1950) pp. 112–166</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.E. Bellman, "Vector Lyapunov functions" ''J. Soc. Industr. Appl. Math. Ser. A Control.'' , '''1''' : 1 (1962) pp. 32–34</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> V.M. Matrosov, "The comparison principle with a Lyapunov vector-function I" ''Differential Equations'' , '''4''' : 8 (1968) pp. 710–717 ''Differentsial'nye Uravneniya'' , '''4''' : 8 (1968) pp. 1374–1386</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> V.M. Matrosov, "Principle of comparison with the Lyapunov vector-functions II" ''Differential Equations'' , '''4''' : 10 (1968) pp. 893–900 ''Differentsial'nye Uravneniya'' , '''4''' : 10 (1968) pp. 1739–1752</TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top"> V.M. Matrosov, "Comparison principle with vector-valued Lyapunov functions III" ''Differential Equations'' , '''5''' : 7 (1969) pp. 853–864 ''Differentsial'nye Uravneniya'' , '''5''' : 7 (1969) pp. 1171–1185</TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top"> V.M. Matrosov, "The principle of comparison with a Lyapunov vector-function IV" ''Differential Equations'' , '''5''' : 12 (1969) pp. 1596–1607 ''Differentsial'nye Uravneniya'' , '''5''' : 12 (1969) pp. 2129–2143</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.A. Martynyuk, "Stability of motion of complex systems" , Kiev (1975) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.A. Martynyuk, R. Gutovski, "Integral inequalities and stability of motion" , Kiev (1979) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1–2''' , Akad. Verlagsgesell. (1943–1944)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.S. Ladde, V. Lakshmikantham, "Random differential inequalities" , Acad. Press (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.S. Ladde, V. Lakshmikantham, "Random differential inequalities" , Acad. Press (1980)</TD></TR></table> |
Latest revision as of 17:45, 4 June 2020
in the theory of differential equations
A theorem that asserts the presence of a specific property of solutions of a differential equation (or system of differential equations) under the assumption that an auxiliary equation or inequality (system of differential equations or inequalities) possesses a certain property.
Examples of comparison theorems.
1) Sturm's theorem: Any non-trivial solution of the equation
$$ \dot{y} dot + p ( t) y = 0,\ \ p ( \cdot ) \in C [ t _ {0} , t _ {1} ] , $$
vanishes on the segment $ [ t _ {0} , t _ {1} ] $ at most $ m $ times $ ( m \geq 1) $ if the equation
$$ \dot{z} dot + q ( t) z = 0,\ \ q ( \cdot ) \in C [ t _ {0} , t _ {1} ] , $$
possesses this property and $ q ( t) \geq p ( t) $ when $ t _ {0} \leq t \leq t _ {1} $( see [1]).
2) A differential inequality: The solution of the problem
$$ \dot{x} _ {i} = \ f _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ x _ {i} ( t _ {0} ) = \ x _ {i} ^ {0} ,\ \ i = 1 \dots n , $$
is component-wise non-negative when $ t \geq t _ {0} $ if the solution of the problem
$$ \dot{y} _ {i} = \ g _ {i} ( t, y _ {1} \dots y _ {n} ),\ \ y _ {i} ( t _ {0} ) = y _ {i} ^ {0} ,\ \ i = 1 \dots n $$
possesses this property and if the inequalities
$$ f _ {i} ( t, x _ {1} \dots x _ {n} ) \geq \ g _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ $$
$$ x _ {i} ^ {0} \geq y _ {i} ^ {0} ,\ i = 1 \dots n, $$
$$ \frac{\partial f _ {i} }{\partial x _ {j} } \geq 0,\ \ i, j = 1 \dots n,\ i \neq j, $$
are fulfilled (see [2]).
For other examples of comparison theorems, including the Chaplygin theorem, see Differential inequality. For comparison theorems for partial differential equations see, for example, [3].
One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [4]–[7]). The idea of the comparison principle is as follows. Let a system of differential equations
$$ \tag{1 } \dot{x} = f ( t, x),\ \ x = ( x _ {1} \dots x _ {n} ) $$
and vector functions
$$ V ( t, x) = ( V _ {1} ( t, x) \dots V _ {m} ( t, x)), $$
$$ W ( t, v) = ( W _ {1} ( t, v) \dots W _ {m} ( t, v)) $$
be given, where $ v = ( v _ {1} \dots v _ {m} ) $. For any solution $ x ( t) $ of the system (1), the function $ v _ {j} ( t) = V _ {j} ( t, x ( t)) $, $ j = 1 \dots m $, satisfies the equation
$$ \dot{v} _ {j} ( t) = \ \frac{\partial V _ {j} ( t, x ( t)) }{\partial t } + \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x ( t)) }{\partial x _ {k} } f _ {k} ( t, x ( t)). $$
Therefore, if the inequalities
$$ \tag{2 } \frac{\partial V _ {j} ( t, x) }{\partial t } + \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } f _ {k} ( t, x) \leq \ W _ {j} ( t, V ( t, x)), $$
$$ j = 1 \dots m, $$
are fulfilled, then on the basis of the properties of the system of differential inequalities
$$ \tag{3 } \dot{v} _ {j} \leq \ W _ {j} ( t, v _ {1} \dots v _ {m} ),\ \ j = 1 \dots m, $$
something can be said about the behaviour of the functions $ V _ {j} ( t, x ( t)) $ that are solutions of the system (3). Knowing the behaviour of the functions $ V _ {j} ( t, x) $ on every solution $ x ( t) $ of the system (1), in turn, enables one to state assertions on the properties of the solutions of the system (1).
For example, let the vector functions $ V ( t, x) $ and $ W ( t, v) $ satisfy the inequalities (2) and for any $ t _ {1} \geq t _ {0} $, $ \gamma > 0 $, let a number $ M > 0 $ exist such that
$$ \sum _ {j = 1 } ^ { m } | V _ {j} ( t, x) | \geq M $$
for all $ t \in [ t _ {0} , t _ {1} ] $, $ \| x \| \geq \gamma $. Furthermore, let every solution of the system of inequalities (3) be defined on $ [ t, \infty ) $. Every solution of the system (1) is then also defined on $ [ t, \infty ) $.
A large number of interesting statements have been obtained on the basis of the comparison principle in the theory of the stability of motion (see [4]–[6]). The Lyapunov comparison principle with a vector function is successfully used for abstract differential equations, differential equations with distributed argument and differential inclusions (cf. Differential equation, abstract; Differential equations, ordinary, with distributed arguments; Differential inclusion). In particular, for a differential inclusion $ \dot{x} \in F ( t, x) $, $ x \in \mathbf R ^ {n} $, where $ F ( t, x) $ is a set in $ \mathbf R ^ {n} $ dependent on $ ( t, x) \in \mathbf R ^ {1} \times \mathbf R ^ {n} $, the role of the inequalities (2) is played by the inequalities
$$ \frac{\partial V _ {j} ( t, x) }{\partial t } + \sup _ {y \in F ( t, x) } \ \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } y _ {k} \leq \ W _ {j} ( t, V ( t, x)). $$
A large number of comparison theorems are given in [8].
References
[1] | C. Sturm, J. Math. Pures Appl. , 1 (1836) pp. 106–186 |
[2] | T. Waźewski, "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications" Ann. Soc. Polon. Math. , 23 (1950) pp. 112–166 |
[3] | A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964) |
[4] | R.E. Bellman, "Vector Lyapunov functions" J. Soc. Industr. Appl. Math. Ser. A Control. , 1 : 1 (1962) pp. 32–34 |
[5a] | V.M. Matrosov, "The comparison principle with a Lyapunov vector-function I" Differential Equations , 4 : 8 (1968) pp. 710–717 Differentsial'nye Uravneniya , 4 : 8 (1968) pp. 1374–1386 |
[5b] | V.M. Matrosov, "Principle of comparison with the Lyapunov vector-functions II" Differential Equations , 4 : 10 (1968) pp. 893–900 Differentsial'nye Uravneniya , 4 : 10 (1968) pp. 1739–1752 |
[5c] | V.M. Matrosov, "Comparison principle with vector-valued Lyapunov functions III" Differential Equations , 5 : 7 (1969) pp. 853–864 Differentsial'nye Uravneniya , 5 : 7 (1969) pp. 1171–1185 |
[5d] | V.M. Matrosov, "The principle of comparison with a Lyapunov vector-function IV" Differential Equations , 5 : 12 (1969) pp. 1596–1607 Differentsial'nye Uravneniya , 5 : 12 (1969) pp. 2129–2143 |
[6] | A.A. Martynyuk, "Stability of motion of complex systems" , Kiev (1975) (In Russian) |
[7] | A.A. Martynyuk, R. Gutovski, "Integral inequalities and stability of motion" , Kiev (1979) (In Russian) |
[8] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1–2 , Akad. Verlagsgesell. (1943–1944) |
Comments
References
[a1] | C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968) |
[a2] | G.S. Ladde, V. Lakshmikantham, "Random differential inequalities" , Acad. Press (1980) |
Comparison theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_theorem&oldid=46412