Difference between revisions of "Cohomology group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0230801.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/C023/C.0203080 Cohomology group | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | The graded group | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''of a cochain complex $ K ^ { . } = ( K ^ {n} , d _ {n} ) $ | ||
+ | of Abelian groups'' | ||
+ | |||
+ | The graded group $ H ^ { . } ( K) = \oplus H ^ {n} ( K) $, | ||
+ | where $ H ^ {n} ( K) = \mathop{\rm Ker} d _ {n+} 1 / \mathop{\rm Im} d _ {n} $( | ||
+ | see [[Complex|Complex]]). The group $ H ^ {n} ( K) $ | ||
+ | is called the $ n $- | ||
+ | dimensional, or the $ n $- | ||
+ | th, cohomology group of the complex $ K ^ { . } $. | ||
+ | This concept is dual to that of homology group of a chain complex (see [[Homology of a complex|Homology of a complex]]). | ||
In the category of modules, the cohomology module of a cochain complex is also called a cohomology group. | In the category of modules, the cohomology module of a cochain complex is also called a cohomology group. | ||
− | The cohomology group of a chain complex | + | The cohomology group of a chain complex $ K _ {. } = ( K _ {n} , d _ {n} ) $ |
+ | of $ \Lambda $- | ||
+ | modules with coefficients, or values, in $ A $, | ||
+ | where $ \Lambda $ | ||
+ | is an associative ring with identity and $ A $ | ||
+ | is a $ \Lambda $- | ||
+ | module, is the cohomology group | ||
− | + | $$ | |
+ | H ^ { . } ( K _ {. } , A ) = \oplus H ^ {n} ( K _ {. } , A ) | ||
+ | $$ | ||
of the cochain complex | of the cochain complex | ||
− | + | $$ | |
+ | \mathop{\rm Hom} _ \Lambda ( K _ {. } , A ) = \ | ||
+ | ( \mathop{\rm Hom} _ \Lambda ( K _ {n} , A ) , d _ {n} ^ {*} ) , | ||
+ | $$ | ||
− | where | + | where $ d _ {n} ^ {*} ( \gamma ) = \gamma \circ d _ {n} $, |
+ | $ \gamma \in \mathop{\rm Hom} ( K _ {n} , A ) $. | ||
+ | A special case of this construction is the cohomology group of a polyhedron, the singular cohomology group of a topological space, and the cohomology groups of groups, algebras, etc. | ||
− | If | + | If $ 0 \rightarrow K _ {. } \rightarrow ^ \alpha L _ { . } \rightarrow ^ \beta M _ {. } \rightarrow 0 $ |
+ | is an exact sequence of complexes of $ \Lambda $- | ||
+ | modules, where the images of the $ K _ {n} $ | ||
+ | are direct factors in $ L _ {n} $, | ||
+ | the following exact sequence arises in a natural way: | ||
− | + | $$ | |
+ | {} \dots \rightarrow H ^ {n} ( M _ {. } , A ) \rightarrow ^ { {\alpha ^ {*}} } \ | ||
+ | H ^ {n} ( L _ { . } , A ) \rightarrow ^ { {\beta ^ {*}} } \ | ||
+ | H ^ {n} ( K _ {. } , A ) \rightarrow ^ { {d ^ {*}} } | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow ^ { {d ^ {*}} } H ^ {n+} 1 ( M _ {. } , A ) \rightarrow \dots . | ||
+ | $$ | ||
− | On the other hand, if | + | On the other hand, if $ K _ {. } $ |
+ | is a complex of $ \Lambda $- | ||
+ | modules, and all $ K _ {n} $ | ||
+ | are projective, then with every exact sequence $ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $ | ||
+ | of $ \Lambda $- | ||
+ | modules is associated an exact sequence of cohomology groups: | ||
− | + | $$ | |
+ | {} \dots \rightarrow H ^ {n} ( K _ {. } , A ) \rightarrow H ^ {n} ( K _ {. } ,\ | ||
+ | B ) \rightarrow H ^ {n} ( K _ {. } , C ) \rightarrow | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow \ | ||
+ | H ^ {n+} 1 ( K _ {. } , A ) \rightarrow \dots . | ||
+ | $$ | ||
See [[Homology group|Homology group]]; [[Cohomology|Cohomology]] (for the cohomology group of a topological space). | See [[Homology group|Homology group]]; [[Cohomology|Cohomology]] (for the cohomology group of a topological space). | ||
Line 31: | Line 84: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes. | The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes. |
Latest revision as of 17:45, 4 June 2020
of a cochain complex $ K ^ { . } = ( K ^ {n} , d _ {n} ) $
of Abelian groups
The graded group $ H ^ { . } ( K) = \oplus H ^ {n} ( K) $, where $ H ^ {n} ( K) = \mathop{\rm Ker} d _ {n+} 1 / \mathop{\rm Im} d _ {n} $( see Complex). The group $ H ^ {n} ( K) $ is called the $ n $- dimensional, or the $ n $- th, cohomology group of the complex $ K ^ { . } $. This concept is dual to that of homology group of a chain complex (see Homology of a complex).
In the category of modules, the cohomology module of a cochain complex is also called a cohomology group.
The cohomology group of a chain complex $ K _ {. } = ( K _ {n} , d _ {n} ) $ of $ \Lambda $- modules with coefficients, or values, in $ A $, where $ \Lambda $ is an associative ring with identity and $ A $ is a $ \Lambda $- module, is the cohomology group
$$ H ^ { . } ( K _ {. } , A ) = \oplus H ^ {n} ( K _ {. } , A ) $$
of the cochain complex
$$ \mathop{\rm Hom} _ \Lambda ( K _ {. } , A ) = \ ( \mathop{\rm Hom} _ \Lambda ( K _ {n} , A ) , d _ {n} ^ {*} ) , $$
where $ d _ {n} ^ {*} ( \gamma ) = \gamma \circ d _ {n} $, $ \gamma \in \mathop{\rm Hom} ( K _ {n} , A ) $. A special case of this construction is the cohomology group of a polyhedron, the singular cohomology group of a topological space, and the cohomology groups of groups, algebras, etc.
If $ 0 \rightarrow K _ {. } \rightarrow ^ \alpha L _ { . } \rightarrow ^ \beta M _ {. } \rightarrow 0 $ is an exact sequence of complexes of $ \Lambda $- modules, where the images of the $ K _ {n} $ are direct factors in $ L _ {n} $, the following exact sequence arises in a natural way:
$$ {} \dots \rightarrow H ^ {n} ( M _ {. } , A ) \rightarrow ^ { {\alpha ^ {*}} } \ H ^ {n} ( L _ { . } , A ) \rightarrow ^ { {\beta ^ {*}} } \ H ^ {n} ( K _ {. } , A ) \rightarrow ^ { {d ^ {*}} } $$
$$ \rightarrow ^ { {d ^ {*}} } H ^ {n+} 1 ( M _ {. } , A ) \rightarrow \dots . $$
On the other hand, if $ K _ {. } $ is a complex of $ \Lambda $- modules, and all $ K _ {n} $ are projective, then with every exact sequence $ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $ of $ \Lambda $- modules is associated an exact sequence of cohomology groups:
$$ {} \dots \rightarrow H ^ {n} ( K _ {. } , A ) \rightarrow H ^ {n} ( K _ {. } ,\ B ) \rightarrow H ^ {n} ( K _ {. } , C ) \rightarrow $$
$$ \rightarrow \ H ^ {n+} 1 ( K _ {. } , A ) \rightarrow \dots . $$
See Homology group; Cohomology (for the cohomology group of a topological space).
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[2] | R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958) |
[3] | S. MacLane, "Homology" , Springer (1963) |
Comments
The exact sequence of cohomology groups given above is often referred to as a long exact sequence of cohomology groups associated to a short exact sequence of complexes.
Cohomology group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_group&oldid=46388