|
|
Line 1: |
Line 1: |
− | The complement of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200303.png" />-set in a complete separable metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200304.png" />; that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200306.png" />-set if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200307.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200308.png" />-set, or, in other words a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200309.png" />-set is a [[Projective set|projective set]] of class 2. There is an example of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003010.png" />-set that is not an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003011.png" />-set. Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003012.png" />-set is a one-to-one continuous image of some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003013.png" />-set (Mazurkiewicz's theorem).
| + | <!-- |
| + | c0200303.png |
| + | $#A+1 = 33 n = 0 |
| + | $#C+1 = 33 : ~/encyclopedia/old_files/data/C020/C.0200030 \BMI C \FfA\EMI\AAhset |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003014.png" /> is called a value of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003016.png" /> of a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003017.png" /> if there is one and only one point such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003018.png" />. The values of order 1 of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003019.png" />-measurable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003020.png" /> on an arbitrary Borel set form a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003021.png" />-set (Luzin's theorem). The converse is true: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003023.png" /> be any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003024.png" />-set belonging to a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003025.png" />. Then there is a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003026.png" /> defined on a closed subset of the irrational numbers such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003027.png" /> is the set of points of order 1 of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003028.png" />. Kuratowski's reduction theorem: Given an infinite sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003029.png" />-sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003030.png" /> there is a sequence of disjoint <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003031.png" />-sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003032.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003034.png" />. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | The complement of an $ {\mathcal A} $- |
| + | set in a complete separable metric space $ X $; |
| + | that is, $ P \subset X $ |
| + | is a $ C {\mathcal A} $- |
| + | set if $ X \setminus P $ |
| + | is an $ {\mathcal A} $- |
| + | set, or, in other words a $ C {\mathcal A} $- |
| + | set is a [[Projective set|projective set]] of class 2. There is an example of a $ C {\mathcal A} $- |
| + | set that is not an $ {\mathcal A} $- |
| + | set. Any $ {\mathcal A} $- |
| + | set is a one-to-one continuous image of some $ C {\mathcal A} $- |
| + | set (Mazurkiewicz's theorem). |
| + | |
| + | A point $ y $ |
| + | is called a value of order $ 1 $ |
| + | of a mapping $ f $ |
| + | if there is one and only one point such that $ y = f (x) $. |
| + | The values of order 1 of a $ B $- |
| + | measurable mapping $ f $ |
| + | on an arbitrary Borel set form a $ C {\mathcal A} $- |
| + | set (Luzin's theorem). The converse is true: Let $ C $ |
| + | be any $ C {\mathcal A} $- |
| + | set belonging to a space $ X $. |
| + | Then there is a continuous function $ f $ |
| + | defined on a closed subset of the irrational numbers such that $ C $ |
| + | is the set of points of order 1 of $ f $. |
| + | Kuratowski's reduction theorem: Given an infinite sequence of $ C {\mathcal A} $- |
| + | sets $ U ^ {1} , U ^ {2} \dots $ |
| + | there is a sequence of disjoint $ C {\mathcal A} $- |
| + | sets $ V ^ {1} , V ^ {2} \dots $ |
| + | such that $ V ^ {n} \subset U ^ {n} $ |
| + | and $ \cup _ {n=1} ^ \infty V ^ {n} = \cup _ {n=1} ^ \infty U ^ {n} $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kuratowski, "Topology" , '''1''' , Acad. Press (1966) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kuratowski, "Topology" , '''1''' , Acad. Press (1966) (Translated from French)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003035.png" />-set is also called a co-analytic set, their class is nowadays denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003036.png" />. See also [[A-set|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c02003037.png" />-set]]. | + | A $ C {\mathcal A} $- |
| + | set is also called a co-analytic set, their class is nowadays denoted by $ \Pi _ {1} ^ {1} $. |
| + | See also [[A-set| $ {\mathcal A} $- |
| + | set]]. |
The complement of an $ {\mathcal A} $-
set in a complete separable metric space $ X $;
that is, $ P \subset X $
is a $ C {\mathcal A} $-
set if $ X \setminus P $
is an $ {\mathcal A} $-
set, or, in other words a $ C {\mathcal A} $-
set is a projective set of class 2. There is an example of a $ C {\mathcal A} $-
set that is not an $ {\mathcal A} $-
set. Any $ {\mathcal A} $-
set is a one-to-one continuous image of some $ C {\mathcal A} $-
set (Mazurkiewicz's theorem).
A point $ y $
is called a value of order $ 1 $
of a mapping $ f $
if there is one and only one point such that $ y = f (x) $.
The values of order 1 of a $ B $-
measurable mapping $ f $
on an arbitrary Borel set form a $ C {\mathcal A} $-
set (Luzin's theorem). The converse is true: Let $ C $
be any $ C {\mathcal A} $-
set belonging to a space $ X $.
Then there is a continuous function $ f $
defined on a closed subset of the irrational numbers such that $ C $
is the set of points of order 1 of $ f $.
Kuratowski's reduction theorem: Given an infinite sequence of $ C {\mathcal A} $-
sets $ U ^ {1} , U ^ {2} \dots $
there is a sequence of disjoint $ C {\mathcal A} $-
sets $ V ^ {1} , V ^ {2} \dots $
such that $ V ^ {n} \subset U ^ {n} $
and $ \cup _ {n=1} ^ \infty V ^ {n} = \cup _ {n=1} ^ \infty U ^ {n} $.
References
[1] | K. Kuratowski, "Topology" , 1 , Acad. Press (1966) (Translated from French) |
A $ C {\mathcal A} $-
set is also called a co-analytic set, their class is nowadays denoted by $ \Pi _ {1} ^ {1} $.
See also $ {\mathcal A} $-
set.