Difference between revisions of "Brafman polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b1108301.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/B110/B.1100830 Brafman polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Polynomials given by | Polynomials given by | ||
− | + | $$ | |
+ | B _ {n} ^ {p} ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | { {} _ {p + r } F _ {s} } [ \Delta ( p; - n ) , a _ {1} \dots a _ {r} , b _ {1} \dots b _ {s} ;x ] , | ||
+ | $$ | ||
− | where | + | where $ p $ |
+ | is a positive integer, $ \Delta ( p; - n ) $ | ||
+ | abbreviates the set of $ p $ | ||
+ | parameters | ||
− | + | $$ | |
+ | { | ||
+ | \frac{- n }{p} | ||
+ | } , - { | ||
+ | \frac{( n - 1 ) }{p} | ||
+ | } \dots - { | ||
+ | \frac{( n - p + 1 ) }{p} | ||
+ | } , | ||
+ | $$ | ||
− | and for non-negative integers | + | and for non-negative integers $ r $ |
+ | and $ s $, | ||
+ | $ { {} _ {r} F _ {s} } $ | ||
+ | denotes the generalized hypergeometric function (cf. also [[Hypergeometric function|Hypergeometric function]]), defined by | ||
− | + | $$ | |
+ | { {} _ {r} F _ {s} } ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = \sum _ {k = 0 } ^ \infty { | ||
+ | \frac{( a _ {1} ) _ {k} \dots ( a _ {r} ) _ {k} x ^ {k} }{( b _ {1} ) _ {k} \dots ( b _ {s} ) _ {k} k! } | ||
+ | } . | ||
+ | $$ | ||
The Brafman polynomials arise in the study of generating functions of [[Orthogonal polynomials|orthogonal polynomials]], [[#References|[a1]]]. | The Brafman polynomials arise in the study of generating functions of [[Orthogonal polynomials|orthogonal polynomials]], [[#References|[a1]]]. |
Latest revision as of 06:29, 30 May 2020
Polynomials given by
$$ B _ {n} ^ {p} ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = $$
$$ = { {} _ {p + r } F _ {s} } [ \Delta ( p; - n ) , a _ {1} \dots a _ {r} , b _ {1} \dots b _ {s} ;x ] , $$
where $ p $ is a positive integer, $ \Delta ( p; - n ) $ abbreviates the set of $ p $ parameters
$$ { \frac{- n }{p} } , - { \frac{( n - 1 ) }{p} } \dots - { \frac{( n - p + 1 ) }{p} } , $$
and for non-negative integers $ r $ and $ s $, $ { {} _ {r} F _ {s} } $ denotes the generalized hypergeometric function (cf. also Hypergeometric function), defined by
$$ { {} _ {r} F _ {s} } ( a _ {1} \dots a _ {r} ;b _ {1} \dots b _ {s} ;x ) = \sum _ {k = 0 } ^ \infty { \frac{( a _ {1} ) _ {k} \dots ( a _ {r} ) _ {k} x ^ {k} }{( b _ {1} ) _ {k} \dots ( b _ {s} ) _ {k} k! } } . $$
The Brafman polynomials arise in the study of generating functions of orthogonal polynomials, [a1].
There are extensions. H.W. Gould and A.T. Hopper [a2] have considered special cases which sometimes reduce to the Hermite polynomials; see [a4] for a generalization. It is known [a3] that, in general, the Brafman polynomials cannot form an orthogonal set with respect to any weight function.
References
[a1] | F. Brafman, "Some generating functions for Laguerre and Hermite polynomials" Canadian J. Math. , 9 (1957) pp. 180–187 |
[a2] | H.W. Gould, A.T. Hopper, "Operational formulas connected with two generalizations of Hermite polynomials" Duke Math. J. , 29 (1962) pp. 51–63 |
[a3] | D. Mangeron, A.M. Krall, D.L. Fernandez, "Weight functions for some new classes of orthogonal polynomials" R. Acad. Cien. (Madrid) , 77 (1983) pp. 597–607 |
[a4] | R.M. Shreshtha, "On generalized Brafman polynomials" Comp. R. Acad. Bulgar. Sci. , 32 (1979) pp. 1183–1185 |
Brafman polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brafman_polynomials&oldid=46144