Difference between revisions of "Boyd index"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1108101.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/B110/B.1100810 Boyd index | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | The lower and upper Boyd indices of a rearrangement-invariant function space $ X $ | ||
+ | on $ [ 0, \infty ) $ | ||
+ | or $ [ 0,1 ] $ | ||
+ | are defined by the respective formulas [[#References|[a1]]] | ||
+ | |||
+ | $$ | ||
+ | \alpha _ {X} = {\lim\limits } _ {t \rightarrow 0 } { | ||
+ | \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } | ||
+ | } | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | \beta _ {X} = {\lim\limits } _ {t \rightarrow \infty } { | ||
+ | \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } | ||
+ | } . | ||
+ | $$ | ||
− | Here | + | Here $ D _ {t} $, |
+ | $ t > 0 $, | ||
+ | is the dilation operator, i.e. | ||
− | + | $$ | |
+ | D _ {t} f ( x ) = f \left ( { | ||
+ | \frac{x}{t} | ||
+ | } \right ) , | ||
+ | $$ | ||
− | for a [[Measurable function|measurable function]] | + | for a [[Measurable function|measurable function]] $ f $ |
+ | on $ [ 0, \infty ) $, | ||
+ | while for an $ f $ | ||
+ | on $ [ 0,1 ] $, | ||
− | + | $$ | |
+ | D _ {t} f ( x ) = \left \{ | ||
+ | \begin{array}{l} | ||
+ | {f ( { | ||
+ | \frac{x}{t} | ||
+ | } ) \ \textrm{ if } x \leq { \mathop{\rm min} } ( 1,t ) , } \\ | ||
+ | {0 \ \textrm{ if } t < x \leq 1. } | ||
+ | \end{array} | ||
+ | \right . | ||
+ | $$ | ||
− | This operator is bounded in every rearrangement-invariant space | + | This operator is bounded in every rearrangement-invariant space $ X $ |
+ | and the expression $ \| {D _ {t} } \| _ {X} $ | ||
+ | is its norm in $ X $. | ||
+ | The limits exist and $ 0 \leq \alpha _ {X} \leq \beta _ {X} \leq 1 $. | ||
+ | Sometimes the indices are taken in the form $ p _ {X} = {1 / {\beta _ {X} } } $ | ||
+ | and $ q _ {X} = {1 / {\alpha _ {X} } } $[[#References|[a2]]]. | ||
− | There are many applications of Boyd indices. The first one was made by D.W. Boyd [[#References|[a1]]], who proved an interpolation theorem which gives, in terms of | + | There are many applications of Boyd indices. The first one was made by D.W. Boyd [[#References|[a1]]], who proved an interpolation theorem which gives, in terms of $ \alpha _ {X} $ |
+ | and $ \beta _ {X} $, | ||
+ | the conditions for a [[Linear operator|linear operator]] of a weak type to be bounded in $ X $( | ||
+ | cf. also [[Interpolation of operators|Interpolation of operators]]). | ||
− | A necessary and sufficient condition for some classical operators to be bounded in | + | A necessary and sufficient condition for some classical operators to be bounded in $ X $ |
+ | may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator | ||
− | + | $$ | |
+ | Hf ( x ) = { | ||
+ | \frac{1}{x} | ||
+ | } \int\limits _ { 0 } ^ { x } {f ( t ) } {dt } | ||
+ | $$ | ||
− | is bounded in | + | is bounded in $ X $ |
+ | if and only if $ \beta _ {X} < 1 $[[#References|[a3]]]. | ||
− | An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [[#References|[a4]]]. Let | + | An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [[#References|[a4]]]. Let $ X $ |
+ | be a rearrangement-invariant space on $ [ 0,1 ] $ | ||
+ | and denote by $ Y $ | ||
+ | the space of all measurable functions on $ [ 0, \infty ) $ | ||
+ | such that $ f ^ {*} \chi _ {[ 0,1 ] } \in X $ | ||
+ | and $ f ^ {*} \chi _ {( 1, \infty ) } \in L _ {2} ( 1, \infty ) $, | ||
+ | where $ f ^ {*} $ | ||
+ | is the decreasing rearrangement (cf. also [[Marcinkiewicz space|Marcinkiewicz space]]) of $ | f | $ | ||
+ | and $ \chi _ {A} $ | ||
+ | denotes the indicator of the set $ A $. | ||
+ | Put | ||
− | + | $$ | |
+ | \left \| f \right \| _ {Y} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | \max \left \{ \left \| {f ^ {*} \chi _ {[ 0,1 ] } } \right \| _ {X} , \left ( \sum _ {k = 0 } ^ \infty \left ( \int\limits _ { k } ^ { {k } + 1 } {f ^ {*} ( x ) } {dx } \right ) ^ {2} \right ) ^ {1/2 } \right \} . | ||
+ | $$ | ||
− | If the strong inequalities < | + | If the strong inequalities $ 0 < \alpha _ {X} \leq \beta _ {X} < 1 $ |
+ | take place, then the spaces $ X $ | ||
+ | and $ Y $ | ||
+ | are isomorphic. In other words, $ X $ | ||
+ | admits a representation as a rearrangement-invariant space on $ [ 0, \infty ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.W. Boyd, "Indices of function spaces and their relationship to interpolation" ''Canadian J. Math.'' , '''21''' (1969) pp. 1245–1254</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , '''II. Function spaces''' , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.G. Krein, E.M. Semenov, Yu.I. Petunin, "Interpolation of linear operators" , ''Transl. Math. Monograph'' , '''54''' , Amer. Math. Soc. (1982) (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, "Symmetric structures in Banach spaces" , ''Memoirs'' , '''217''' , Amer. Math. Soc. (1979) pp. 1–298</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.W. Boyd, "Indices of function spaces and their relationship to interpolation" ''Canadian J. Math.'' , '''21''' (1969) pp. 1245–1254</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , '''II. Function spaces''' , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S.G. Krein, E.M. Semenov, Yu.I. Petunin, "Interpolation of linear operators" , ''Transl. Math. Monograph'' , '''54''' , Amer. Math. Soc. (1982) (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, "Symmetric structures in Banach spaces" , ''Memoirs'' , '''217''' , Amer. Math. Soc. (1979) pp. 1–298</TD></TR></table> |
Latest revision as of 06:29, 30 May 2020
The lower and upper Boyd indices of a rearrangement-invariant function space $ X $
on $ [ 0, \infty ) $
or $ [ 0,1 ] $
are defined by the respective formulas [a1]
$$ \alpha _ {X} = {\lim\limits } _ {t \rightarrow 0 } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } $$
and
$$ \beta _ {X} = {\lim\limits } _ {t \rightarrow \infty } { \frac{ { \mathop{\rm log} } \left \| {D _ {t} } \right \| _ {X} }{ { \mathop{\rm log} } t } } . $$
Here $ D _ {t} $, $ t > 0 $, is the dilation operator, i.e.
$$ D _ {t} f ( x ) = f \left ( { \frac{x}{t} } \right ) , $$
for a measurable function $ f $ on $ [ 0, \infty ) $, while for an $ f $ on $ [ 0,1 ] $,
$$ D _ {t} f ( x ) = \left \{ \begin{array}{l} {f ( { \frac{x}{t} } ) \ \textrm{ if } x \leq { \mathop{\rm min} } ( 1,t ) , } \\ {0 \ \textrm{ if } t < x \leq 1. } \end{array} \right . $$
This operator is bounded in every rearrangement-invariant space $ X $ and the expression $ \| {D _ {t} } \| _ {X} $ is its norm in $ X $. The limits exist and $ 0 \leq \alpha _ {X} \leq \beta _ {X} \leq 1 $. Sometimes the indices are taken in the form $ p _ {X} = {1 / {\beta _ {X} } } $ and $ q _ {X} = {1 / {\alpha _ {X} } } $[a2].
There are many applications of Boyd indices. The first one was made by D.W. Boyd [a1], who proved an interpolation theorem which gives, in terms of $ \alpha _ {X} $ and $ \beta _ {X} $, the conditions for a linear operator of a weak type to be bounded in $ X $( cf. also Interpolation of operators).
A necessary and sufficient condition for some classical operators to be bounded in $ X $ may be also obtained in terms of Boyd indices. For example, the Hardy–Littlewood operator
$$ Hf ( x ) = { \frac{1}{x} } \int\limits _ { 0 } ^ { x } {f ( t ) } {dt } $$
is bounded in $ X $ if and only if $ \beta _ {X} < 1 $[a3].
An important property of the class of rearrangement-invariant spaces with non-trivial Boyd indices was discovered in [a4]. Let $ X $ be a rearrangement-invariant space on $ [ 0,1 ] $ and denote by $ Y $ the space of all measurable functions on $ [ 0, \infty ) $ such that $ f ^ {*} \chi _ {[ 0,1 ] } \in X $ and $ f ^ {*} \chi _ {( 1, \infty ) } \in L _ {2} ( 1, \infty ) $, where $ f ^ {*} $ is the decreasing rearrangement (cf. also Marcinkiewicz space) of $ | f | $ and $ \chi _ {A} $ denotes the indicator of the set $ A $. Put
$$ \left \| f \right \| _ {Y} = $$
$$ = \max \left \{ \left \| {f ^ {*} \chi _ {[ 0,1 ] } } \right \| _ {X} , \left ( \sum _ {k = 0 } ^ \infty \left ( \int\limits _ { k } ^ { {k } + 1 } {f ^ {*} ( x ) } {dx } \right ) ^ {2} \right ) ^ {1/2 } \right \} . $$
If the strong inequalities $ 0 < \alpha _ {X} \leq \beta _ {X} < 1 $ take place, then the spaces $ X $ and $ Y $ are isomorphic. In other words, $ X $ admits a representation as a rearrangement-invariant space on $ [ 0, \infty ) $.
References
[a1] | D.W. Boyd, "Indices of function spaces and their relationship to interpolation" Canadian J. Math. , 21 (1969) pp. 1245–1254 |
[a2] | J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , II. Function spaces , Springer (1979) |
[a3] | S.G. Krein, E.M. Semenov, Yu.I. Petunin, "Interpolation of linear operators" , Transl. Math. Monograph , 54 , Amer. Math. Soc. (1982) (In Russian) |
[a4] | W.B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, "Symmetric structures in Banach spaces" , Memoirs , 217 , Amer. Math. Soc. (1979) pp. 1–298 |
Boyd index. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boyd_index&oldid=46142