Namespaces
Variants
Actions

Difference between revisions of "Boundary correspondence (under conformal mapping)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''''A property of a univalent conformal mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172801.png" /> of a finitely-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172802.png" /> onto a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172803.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172804.png" />-plane consisting of the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172805.png" /> can be extended to a [[Homeomorphism|homeomorphism]] between certain compactifications <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172806.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172807.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b0172809.png" />, respect- ively; that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728010.png" /> induces a homeomorphism of the boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728012.png" />. For the ordinary (Euclidean) boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728016.png" /> this property does not always hold. For example, a conformal mapping of a disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728017.png" /> induces a homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728019.png" /> only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017280/b01728020.png" /> is homeomorphic to a circle.
+
<!--
 +
b0172801.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/B017/B.0107280 Boundary correspondence (under conformal mapping)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''''A property of a univalent conformal mapping  $  f $
 +
of a finitely-connected domain $  G $
 +
onto a domain $  D $
 +
in the $  z $-
 +
plane consisting of the fact that $  f $
 +
can be extended to a [[Homeomorphism|homeomorphism]] between certain compactifications $  \widetilde{G}  $
 +
and $  \widetilde{D}  $
 +
of $  G $
 +
and $  D $,  
 +
respect- ively; that is, $  f $
 +
induces a homeomorphism of the boundaries $  \widetilde{G}  \setminus  G $
 +
and $  \widetilde{D}  \setminus  D $.  
 +
For the ordinary (Euclidean) boundaries $  \partial  G $
 +
and $  \partial  D $
 +
of $  G $
 +
and $  D $
 +
this property does not always hold. For example, a conformal mapping of a disc $  K $
 +
induces a homeomorphism of $  \partial  K $
 +
and $  \partial  D $
 +
only if $  \partial  D $
 +
is homeomorphic to a circle.
  
 
There are several known compactifications of a simply-connected domain with the property of boundary correspondence under conformal mapping. Historical precedence goes to the Carathéodory extension (see [[#References|[1]]], and also [[#References|[2]]]). It is the most intuitive and is often used in the study of conformal and other mappings. The elements of the boundary thus obtained were called prime ends by C. Carathéodory (see [[Limit elements|Limit elements]]). A theory has been developed of boundary correspondence under variable conformal mappings of simply-connected domains (see [[#References|[3]]]).
 
There are several known compactifications of a simply-connected domain with the property of boundary correspondence under conformal mapping. Historical precedence goes to the Carathéodory extension (see [[#References|[1]]], and also [[#References|[2]]]). It is the most intuitive and is often used in the study of conformal and other mappings. The elements of the boundary thus obtained were called prime ends by C. Carathéodory (see [[Limit elements|Limit elements]]). A theory has been developed of boundary correspondence under variable conformal mappings of simply-connected domains (see [[#References|[3]]]).
Line 5: Line 37:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.D. Myshkis,  G.D. Suvorov,  "Conformally-invariant bicompact extensions of a plane simply-connected domain"  ''Soviet Math. Dokl.'' , '''14'''  (1973–1974)  pp. 1488–1491  ''Dokl. Akad. Nauk SSSR'' , '''212'''  (1973)  pp. 822–824</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Carathéodory,  "Über die Begrenzung einfach zusammenhängender Gebiete"  ''Math. Ann.'' , '''73'''  (1913)  pp. 323–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.D. Suvorov,  "Prime ends of a sequence of plane regions converging to a nucleus"  ''Amer. Math. Soc. Transl. Ser. 2'' , '''1'''  (1955)  pp. 67–93  ''Mat. Sb.'' , '''33 (75)'''  (1953)  pp. 73–100</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1965–1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G.D. Suvorov,  "Families of plane topological mappings" , Novosibirsk  (1965)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  G.D. Suvorov,  "Metric theory of prime ends and boundary properties of plane mappings with bounded Dirichlet integrals" , Kiev  (1981)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  O.V. Ivanov,  G.D. Suvorov,  "Complete lattices of conformally-invariant compactifications of a domain" , Kiev  (1982)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.D. Myshkis,  G.D. Suvorov,  "Conformally-invariant bicompact extensions of a plane simply-connected domain"  ''Soviet Math. Dokl.'' , '''14'''  (1973–1974)  pp. 1488–1491  ''Dokl. Akad. Nauk SSSR'' , '''212'''  (1973)  pp. 822–824</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Carathéodory,  "Über die Begrenzung einfach zusammenhängender Gebiete"  ''Math. Ann.'' , '''73'''  (1913)  pp. 323–370</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.D. Suvorov,  "Prime ends of a sequence of plane regions converging to a nucleus"  ''Amer. Math. Soc. Transl. Ser. 2'' , '''1'''  (1955)  pp. 67–93  ''Mat. Sb.'' , '''33 (75)'''  (1953)  pp. 73–100</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.I. Markushevich,  "Theory of functions of a complex variable" , '''1''' , Chelsea  (1965–1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G.D. Suvorov,  "Families of plane topological mappings" , Novosibirsk  (1965)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  G.D. Suvorov,  "Metric theory of prime ends and boundary properties of plane mappings with bounded Dirichlet integrals" , Kiev  (1981)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  O.V. Ivanov,  G.D. Suvorov,  "Complete lattices of conformally-invariant compactifications of a domain" , Kiev  (1982)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 06:28, 30 May 2020


'A property of a univalent conformal mapping $ f $ of a finitely-connected domain $ G $ onto a domain $ D $ in the $ z $- plane consisting of the fact that $ f $ can be extended to a homeomorphism between certain compactifications $ \widetilde{G} $ and $ \widetilde{D} $ of $ G $ and $ D $, respect- ively; that is, $ f $ induces a homeomorphism of the boundaries $ \widetilde{G} \setminus G $ and $ \widetilde{D} \setminus D $. For the ordinary (Euclidean) boundaries $ \partial G $ and $ \partial D $ of $ G $ and $ D $ this property does not always hold. For example, a conformal mapping of a disc $ K $ induces a homeomorphism of $ \partial K $ and $ \partial D $ only if $ \partial D $ is homeomorphic to a circle.

There are several known compactifications of a simply-connected domain with the property of boundary correspondence under conformal mapping. Historical precedence goes to the Carathéodory extension (see [1], and also [2]). It is the most intuitive and is often used in the study of conformal and other mappings. The elements of the boundary thus obtained were called prime ends by C. Carathéodory (see Limit elements). A theory has been developed of boundary correspondence under variable conformal mappings of simply-connected domains (see [3]).

References

[1] A.D. Myshkis, G.D. Suvorov, "Conformally-invariant bicompact extensions of a plane simply-connected domain" Soviet Math. Dokl. , 14 (1973–1974) pp. 1488–1491 Dokl. Akad. Nauk SSSR , 212 (1973) pp. 822–824
[2] C. Carathéodory, "Über die Begrenzung einfach zusammenhängender Gebiete" Math. Ann. , 73 (1913) pp. 323–370
[3] G.D. Suvorov, "Prime ends of a sequence of plane regions converging to a nucleus" Amer. Math. Soc. Transl. Ser. 2 , 1 (1955) pp. 67–93 Mat. Sb. , 33 (75) (1953) pp. 73–100
[4] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1965–1977) (Translated from Russian)
[5] E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6
[6] G.D. Suvorov, "Families of plane topological mappings" , Novosibirsk (1965) (In Russian)
[7] G.D. Suvorov, "Metric theory of prime ends and boundary properties of plane mappings with bounded Dirichlet integrals" , Kiev (1981) (In Russian)
[8] O.V. Ivanov, G.D. Suvorov, "Complete lattices of conformally-invariant compactifications of a domain" , Kiev (1982) (In Russian)

Comments

Standard English references on boundary correspondence under conformal mapping and prime ends are [a1][a3].

References

[a1] L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)
[a2] M. Ohtsuka, "Dirichlet problem, extremal length and prime ends" , v. Nostrand-Reinhold (1970)
[a3] C. Pommerenke, "Univalent functions" , Vandenhoeck & Ruprecht (1975)
How to Cite This Entry:
Boundary correspondence (under conformal mapping). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boundary_correspondence_(under_conformal_mapping)&oldid=46129
This article was adapted from an original article by B.P. Kufarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article