Difference between revisions of "Bohman-Korovkin theorem"
Ulf Rehmann (talk | contribs) m (moved Bohman–Korovkin theorem to Bohman-Korovkin theorem: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1107001.png | ||
+ | $#A+1 = 82 n = 0 | ||
+ | $#C+1 = 82 : ~/encyclopedia/old_files/data/B110/B.1100700 Bohman\ANDKorovkin theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | The starting point is the following theorem of P.P. Korovkin (1953) [[#References|[a6]]], [[#References|[a7]]]: for a given sequence $ ( L _ {n} ) _ {n \leq 1 } $ | ||
+ | of positive linear operators on the space $ C ( A ) $ | ||
+ | into itself (where $ A = [a,b] $ | ||
+ | is a compact interval and $ C ( A ) $ | ||
+ | denotes the [[Banach space|Banach space]] of all continuous real-valued functions on $ A $ | ||
+ | with the supremum norm $ \| g \| = \sup \{ {\| {g ( x ) } \| } : {x \in A } \} $), | ||
+ | the relations | ||
+ | |||
+ | $$ | ||
+ | {\lim\limits } _ {n \rightarrow \infty } \left \| {e _ {k} - L _ {n} e _ {k} } \right \| = 0, k = 0,1,2, | ||
+ | $$ | ||
imply convergence: | imply convergence: | ||
− | + | $$ | |
+ | {\lim\limits } _ {n \rightarrow \infty } \left \| {f - L _ {n} f } \right \| = 0 \textrm{ for any } f \in C ( A ) . | ||
+ | $$ | ||
− | Here, the functions | + | Here, the functions $ e _ {k} $ |
+ | are defined by $ e _ {k} ( x ) = x ^ {k} $ | ||
+ | and $ \| \cdot \| $ | ||
+ | is the supremum norm on the interval $ A $. | ||
+ | An element $ f \in C ( A ) $ | ||
+ | is positive (denoted by $ f \geq 0 $) | ||
+ | if $ f ( x ) \geq 0 $ | ||
+ | for all $ x \in A $, | ||
+ | and the [[Linear operator|linear operator]] $ L _ {n} $ | ||
+ | is positive if $ f \geq 0 $ | ||
+ | implies $ L _ {n} f \geq 0 $. | ||
+ | One year earlier, in 1952, H. Bohman [[#References|[a2]]] had proved this theorem for positive operators $ L _ {n} $ | ||
+ | having a representation | ||
− | + | $$ | |
+ | L _ {n} f = \sum _ {k = 0 } ^ { n } f ( x _ {k,n } ) \cdot \psi _ {k,n } | ||
+ | $$ | ||
− | with | + | with $ n + 1 $ |
+ | knots $ x _ {k,n } $ | ||
+ | in the open interval $ ( 0,1 ) $, | ||
+ | and $ \psi _ {k,n } \geq 0 $ | ||
+ | on $ A = [0,1] $. | ||
− | One says that the functions | + | One says that the functions $ e _ {0} ,e _ {1} ,e _ {2} $ |
+ | are a Korovkin set for (positive linear operators on) $ C[a,b] $. | ||
+ | Korovkin proved that a set of three functions in $ C[a,b] $ | ||
+ | that replaces the set $ \{ e _ {0} ,e _ {1} ,e _ {2} \} $ | ||
+ | must be a [[Chebyshev system|Chebyshev system]]; he also proved that there are no sets of only two functions such that convergence for these two functions implies convergence for all $ f \in C ( A ) $( | ||
+ | cf. also [[Korovkin theorems|Korovkin theorems]]; [[Korovkin-type approximation theory|Korovkin-type approximation theory]]). | ||
− | The results have been generalized to other compact Hausdorff spaces | + | The results have been generalized to other compact Hausdorff spaces $ A $. |
+ | For example, on the circle $ \mathbf T $, | ||
+ | the set of functions $ \{ t _ {0} ,t _ {1} ,t _ {2} \} $ | ||
+ | with $ t _ {0} = e _ {0} $, | ||
+ | $ t _ {1} ( x ) = \cos ( x ) $, | ||
+ | $ t _ {2} ( x ) = \sin ( x ) $ | ||
+ | is a Korovkin set for $ C ( \mathbf T ) $. | ||
+ | As usual, one identifies the functions in $ C ( \mathbf T ) $ | ||
+ | with the continuous $ 2 \pi $- | ||
+ | periodic functions on $ \mathbf R $( | ||
+ | cf, [[#References|[a1]]], [[#References|[a4]]]). On the $ d $- | ||
+ | dimensional cube $ A = [0,1] ^ {d} $, | ||
+ | the set of $ 2d + 1 $ | ||
+ | functions $ e _ {0} ,p _ {1} \dots p _ {d} ,q _ {1} \dots q _ {d} $( | ||
+ | with $ p _ {k} ( x ) = x _ {k} $ | ||
+ | and $ q _ {k} ( x ) = x _ {k} ^ {2} $ | ||
+ | for $ x = ( x _ {1} \dots x _ {d} ) \in A $ | ||
+ | and $ k = 1 \dots d $) | ||
+ | is a Korovkin set for $ C ( A ) $, | ||
+ | but not a minimal Korovkin set. | ||
− | There is also the following generalization. Let | + | There is also the following generalization. Let $ X $ |
+ | be a Banach lattice, let $ {\mathcal L} $ | ||
+ | be the class of all positive linear operators on $ X $, | ||
+ | and let $ S $ | ||
+ | be a fixed subset of $ X $. | ||
+ | Then the Korovkin closure (or shadow, or Korovkin hull) $ \Sigma ( S ) $ | ||
+ | of $ S $ | ||
+ | is the set of all $ f \in X $ | ||
+ | with the property that for each sequence $ ( L _ {n} ) _ {n \geq 1 } $ | ||
+ | in $ {\mathcal L} $ | ||
+ | the relations $ {\lim\limits } _ {n \rightarrow \infty } \| {g - L _ {n} g } \| = 0 $, | ||
+ | $ g \in S $, | ||
+ | imply $ {\lim\limits } _ {n \rightarrow \infty } \| {f - L _ {n} f } \| = 0 $. | ||
+ | The problem is to find $ \Sigma ( S ) $ | ||
+ | for a given $ S $; | ||
+ | if $ \Sigma ( S ) = X $, | ||
+ | then $ S $ | ||
+ | is a Korovkin set (cf. [[#References|[a1]]], [[#References|[a5]]], [[#References|[a8]]]). | ||
− | In some cases one can prove a quantitative form of the Korovkin theorem, estimating the rate of convergence | + | In some cases one can prove a quantitative form of the Korovkin theorem, estimating the rate of convergence $ \| {f - L _ {n} f } \| $ |
+ | in terms of the rate of convergence for the elements of the Korovkin set. For $ A = [ -1,1] $ | ||
+ | one has obtained estimates in terms of the first- or second-order modulus of continuity $ \omega _ {i} $; | ||
+ | for example: | ||
− | + | $$ | |
+ | \left \| {f - L _ {n} f } \right \| \leq \left \| f \right \| \cdot \alpha _ {n} + C \cdot \omega _ {1} ( f, \sqrt {\alpha _ {n} } ) , n = 1,2 \dots | ||
+ | $$ | ||
− | with | + | with $ \alpha _ {n} = \max _ {k = 0,1,2 } \| {e _ {k} - L _ {n} e _ {k} } \| $ |
+ | and some constant $ C > 0 $. | ||
− | If some | + | If some $ L _ {n} $ |
+ | is a polynomial operator, i.e., $ L _ {n} f $ | ||
+ | is a polynomial of degree less than or equal to $ n $, | ||
+ | then at least one of the functions $ e _ {k} $ | ||
+ | can not be approximated better than $ n ^ {-2 } $. | ||
− | Similar results can be obtained for | + | Similar results can be obtained for $ A = \mathbf T $. |
+ | Also, it is possible to estimate $ | {f ( x ) - L _ {n} f ( x ) } | $ | ||
+ | in terms of the moduli of smoothness corresponding to | ||
− | + | $$ | |
+ | \alpha _ {n} ( x ) = \max _ {k = 0,1,2 } \left | {e _ {k} ( x ) - L _ {n} e _ {k} ( x ) } \right | . | ||
+ | $$ | ||
− | Furthermore, quantitative Korovkin theorems for positive linear operators on | + | Furthermore, quantitative Korovkin theorems for positive linear operators on $ L _ {p} $- |
+ | spaces have been obtained (cf. [[#References|[a3]]], [[#References|[a4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Altomare, M. Campiti, "Korovkin-type approximation theory and its applications" , de Gruyter (1994)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Bohman, "On approximation of continuous and of analytic functions" ''Arkiv. Mat. (2)'' , '''1''' (1952) pp. 43–56</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.A. DeVore, "The approximation of continuous functions by positive linear operators" , ''Lecture Notes in Mathematics'' , '''293''' , Springer (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.A. DeVore, G.G. Lorentz, "Constructive approximation" , Springer (1993)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Donner, "Extension of positive operators and Korovkin theorems" , ''Lecture Notes in Mathematics'' , '''904''' , Springer (1982)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.P. Korovkin, "On convergence of linear positive operators in the space of continuous functions" ''Dokl. Akad. Nauk. SSSR'' , '''90''' (1953) pp. 961–964 (In Russian)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P.P. Korovkin, "Linear operators and approximation theory" , Hindustan Publ. Corp. (1960) (In Russian)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G.G. Lorentz, M. von Golitschek, Y. Makovoz, "Constructive approximation: advanced problems" , Springer (1996)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Altomare, M. Campiti, "Korovkin-type approximation theory and its applications" , de Gruyter (1994)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Bohman, "On approximation of continuous and of analytic functions" ''Arkiv. Mat. (2)'' , '''1''' (1952) pp. 43–56</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.A. DeVore, "The approximation of continuous functions by positive linear operators" , ''Lecture Notes in Mathematics'' , '''293''' , Springer (1972)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.A. DeVore, G.G. Lorentz, "Constructive approximation" , Springer (1993)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Donner, "Extension of positive operators and Korovkin theorems" , ''Lecture Notes in Mathematics'' , '''904''' , Springer (1982)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.P. Korovkin, "On convergence of linear positive operators in the space of continuous functions" ''Dokl. Akad. Nauk. SSSR'' , '''90''' (1953) pp. 961–964 (In Russian)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P.P. Korovkin, "Linear operators and approximation theory" , Hindustan Publ. Corp. (1960) (In Russian)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G.G. Lorentz, M. von Golitschek, Y. Makovoz, "Constructive approximation: advanced problems" , Springer (1996)</TD></TR></table> |
Revision as of 10:59, 29 May 2020
The starting point is the following theorem of P.P. Korovkin (1953) [a6], [a7]: for a given sequence $ ( L _ {n} ) _ {n \leq 1 } $
of positive linear operators on the space $ C ( A ) $
into itself (where $ A = [a,b] $
is a compact interval and $ C ( A ) $
denotes the Banach space of all continuous real-valued functions on $ A $
with the supremum norm $ \| g \| = \sup \{ {\| {g ( x ) } \| } : {x \in A } \} $),
the relations
$$ {\lim\limits } _ {n \rightarrow \infty } \left \| {e _ {k} - L _ {n} e _ {k} } \right \| = 0, k = 0,1,2, $$
imply convergence:
$$ {\lim\limits } _ {n \rightarrow \infty } \left \| {f - L _ {n} f } \right \| = 0 \textrm{ for any } f \in C ( A ) . $$
Here, the functions $ e _ {k} $ are defined by $ e _ {k} ( x ) = x ^ {k} $ and $ \| \cdot \| $ is the supremum norm on the interval $ A $. An element $ f \in C ( A ) $ is positive (denoted by $ f \geq 0 $) if $ f ( x ) \geq 0 $ for all $ x \in A $, and the linear operator $ L _ {n} $ is positive if $ f \geq 0 $ implies $ L _ {n} f \geq 0 $. One year earlier, in 1952, H. Bohman [a2] had proved this theorem for positive operators $ L _ {n} $ having a representation
$$ L _ {n} f = \sum _ {k = 0 } ^ { n } f ( x _ {k,n } ) \cdot \psi _ {k,n } $$
with $ n + 1 $ knots $ x _ {k,n } $ in the open interval $ ( 0,1 ) $, and $ \psi _ {k,n } \geq 0 $ on $ A = [0,1] $.
One says that the functions $ e _ {0} ,e _ {1} ,e _ {2} $ are a Korovkin set for (positive linear operators on) $ C[a,b] $. Korovkin proved that a set of three functions in $ C[a,b] $ that replaces the set $ \{ e _ {0} ,e _ {1} ,e _ {2} \} $ must be a Chebyshev system; he also proved that there are no sets of only two functions such that convergence for these two functions implies convergence for all $ f \in C ( A ) $( cf. also Korovkin theorems; Korovkin-type approximation theory).
The results have been generalized to other compact Hausdorff spaces $ A $. For example, on the circle $ \mathbf T $, the set of functions $ \{ t _ {0} ,t _ {1} ,t _ {2} \} $ with $ t _ {0} = e _ {0} $, $ t _ {1} ( x ) = \cos ( x ) $, $ t _ {2} ( x ) = \sin ( x ) $ is a Korovkin set for $ C ( \mathbf T ) $. As usual, one identifies the functions in $ C ( \mathbf T ) $ with the continuous $ 2 \pi $- periodic functions on $ \mathbf R $( cf, [a1], [a4]). On the $ d $- dimensional cube $ A = [0,1] ^ {d} $, the set of $ 2d + 1 $ functions $ e _ {0} ,p _ {1} \dots p _ {d} ,q _ {1} \dots q _ {d} $( with $ p _ {k} ( x ) = x _ {k} $ and $ q _ {k} ( x ) = x _ {k} ^ {2} $ for $ x = ( x _ {1} \dots x _ {d} ) \in A $ and $ k = 1 \dots d $) is a Korovkin set for $ C ( A ) $, but not a minimal Korovkin set.
There is also the following generalization. Let $ X $ be a Banach lattice, let $ {\mathcal L} $ be the class of all positive linear operators on $ X $, and let $ S $ be a fixed subset of $ X $. Then the Korovkin closure (or shadow, or Korovkin hull) $ \Sigma ( S ) $ of $ S $ is the set of all $ f \in X $ with the property that for each sequence $ ( L _ {n} ) _ {n \geq 1 } $ in $ {\mathcal L} $ the relations $ {\lim\limits } _ {n \rightarrow \infty } \| {g - L _ {n} g } \| = 0 $, $ g \in S $, imply $ {\lim\limits } _ {n \rightarrow \infty } \| {f - L _ {n} f } \| = 0 $. The problem is to find $ \Sigma ( S ) $ for a given $ S $; if $ \Sigma ( S ) = X $, then $ S $ is a Korovkin set (cf. [a1], [a5], [a8]).
In some cases one can prove a quantitative form of the Korovkin theorem, estimating the rate of convergence $ \| {f - L _ {n} f } \| $ in terms of the rate of convergence for the elements of the Korovkin set. For $ A = [ -1,1] $ one has obtained estimates in terms of the first- or second-order modulus of continuity $ \omega _ {i} $; for example:
$$ \left \| {f - L _ {n} f } \right \| \leq \left \| f \right \| \cdot \alpha _ {n} + C \cdot \omega _ {1} ( f, \sqrt {\alpha _ {n} } ) , n = 1,2 \dots $$
with $ \alpha _ {n} = \max _ {k = 0,1,2 } \| {e _ {k} - L _ {n} e _ {k} } \| $ and some constant $ C > 0 $.
If some $ L _ {n} $ is a polynomial operator, i.e., $ L _ {n} f $ is a polynomial of degree less than or equal to $ n $, then at least one of the functions $ e _ {k} $ can not be approximated better than $ n ^ {-2 } $.
Similar results can be obtained for $ A = \mathbf T $. Also, it is possible to estimate $ | {f ( x ) - L _ {n} f ( x ) } | $ in terms of the moduli of smoothness corresponding to
$$ \alpha _ {n} ( x ) = \max _ {k = 0,1,2 } \left | {e _ {k} ( x ) - L _ {n} e _ {k} ( x ) } \right | . $$
Furthermore, quantitative Korovkin theorems for positive linear operators on $ L _ {p} $- spaces have been obtained (cf. [a3], [a4]).
References
[a1] | F. Altomare, M. Campiti, "Korovkin-type approximation theory and its applications" , de Gruyter (1994) |
[a2] | H. Bohman, "On approximation of continuous and of analytic functions" Arkiv. Mat. (2) , 1 (1952) pp. 43–56 |
[a3] | R.A. DeVore, "The approximation of continuous functions by positive linear operators" , Lecture Notes in Mathematics , 293 , Springer (1972) |
[a4] | R.A. DeVore, G.G. Lorentz, "Constructive approximation" , Springer (1993) |
[a5] | K. Donner, "Extension of positive operators and Korovkin theorems" , Lecture Notes in Mathematics , 904 , Springer (1982) |
[a6] | P.P. Korovkin, "On convergence of linear positive operators in the space of continuous functions" Dokl. Akad. Nauk. SSSR , 90 (1953) pp. 961–964 (In Russian) |
[a7] | P.P. Korovkin, "Linear operators and approximation theory" , Hindustan Publ. Corp. (1960) (In Russian) |
[a8] | G.G. Lorentz, M. von Golitschek, Y. Makovoz, "Constructive approximation: advanced problems" , Springer (1996) |
Bohman-Korovkin theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bohman-Korovkin_theorem&oldid=46095