Difference between revisions of "Biased estimator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0160501.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/B016/B.0106050 Biased estimator | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A statistical estimator whose expectation does not coincide with the value being estimated. | A statistical estimator whose expectation does not coincide with the value being estimated. | ||
− | Let | + | Let $ X $ |
+ | be a random variable taking values in a sampling space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, | ||
+ | $ \theta \in \Theta $, | ||
+ | and let $ T = T (X) $ | ||
+ | be a statistical point estimator of a function $ f ( \theta ) $ | ||
+ | defined on the parameter set $ \Theta $. | ||
+ | It is assumed that the mathematical expectation $ {\mathsf E} _ \theta \{ T \} $ | ||
+ | of $ T $ | ||
+ | exists. If the function | ||
− | + | $$ | |
+ | b ( \theta ) = \ | ||
+ | {\mathsf E} _ \theta \{ T \} - | ||
+ | f ( \theta ) = \ | ||
+ | {\mathsf E} _ \theta \{ T - f ( \theta ) \} | ||
+ | $$ | ||
− | is not identically equal to zero, that is, | + | is not identically equal to zero, that is, $ b ( \theta ) \not\equiv 0 $, |
+ | then $ T $ | ||
+ | is called a biased estimator of $ f ( \theta ) $ | ||
+ | and $ b ( \theta ) $ | ||
+ | is called the bias or systematic error of $ T $. | ||
− | Example. Let | + | Example. Let $ X _ {1} \dots X _ {n} $ |
+ | be mutually-independent random variables with the same normal distribution $ N _ {1} (a, \sigma ^ {2} ) $, | ||
+ | and let | ||
− | + | $$ | |
+ | \overline{X}\; = \ | ||
+ | { | ||
+ | \frac{X _ {1} + \dots + X _ {n} }{n} | ||
+ | } . | ||
+ | $$ | ||
Then the statistic | Then the statistic | ||
− | + | $$ | |
+ | S _ {n} ^ {2} = \ | ||
+ | { | ||
+ | \frac{1}{n} | ||
+ | } | ||
+ | \sum _ {i = 1 } ^ { n } | ||
+ | (X _ {i} - \overline{X}\; ) ^ {2} | ||
+ | $$ | ||
+ | |||
+ | is a biased estimator of the variance $ \sigma ^ {2} $ | ||
+ | since | ||
+ | |||
+ | $$ | ||
+ | {\mathsf E} \{ S _ {n} ^ {2} \} = \ | ||
+ | { | ||
+ | \frac{n - 1 }{n} | ||
+ | } | ||
+ | \sigma ^ {2} = \ | ||
+ | \sigma ^ {2} - | ||
+ | { | ||
+ | \frac{\sigma ^ {2} }{n} | ||
+ | } , | ||
+ | $$ | ||
− | is | + | that is, the estimator $ S _ {n} ^ {2} $ |
+ | has bias $ b ( \sigma ^ {2} ) = - \sigma ^ {2} /n $. | ||
+ | The mean-square error of this biased estimator is | ||
− | + | $$ | |
+ | {\mathsf E} \{ (S _ {n} ^ {2} - | ||
+ | \sigma ^ {2} ) ^ {2} \} = \ | ||
− | + | \frac{2n - 1 }{n ^ {2} } | |
− | + | \sigma ^ {4} . | |
+ | $$ | ||
− | The best [[Unbiased estimator|unbiased estimator]] of | + | The best [[Unbiased estimator|unbiased estimator]] of $ \sigma ^ {2} $ |
+ | is the statistic | ||
− | + | $$ | |
+ | s _ {n} ^ {2} = \ | ||
+ | { | ||
+ | \frac{n}{n - 1 } | ||
+ | } | ||
+ | S _ {n} ^ {2} = \ | ||
+ | { | ||
+ | \frac{1}{n - 1 } | ||
+ | } | ||
+ | \sum _ {i = 1 } ^ { n } | ||
+ | (X _ {i} - \overline{X}\; ) ^ {2} , | ||
+ | $$ | ||
with mean-square error | with mean-square error | ||
− | + | $$ | |
+ | {\mathsf D} \{ s _ {n} ^ {2} \} = \ | ||
+ | {\mathsf E} \{ (s _ {n} ^ {2} - \sigma ^ {2} ) ^ {2} \} = \ | ||
+ | { | ||
+ | \frac{2}{n - 1 } | ||
+ | } | ||
+ | \sigma ^ {4} . | ||
+ | $$ | ||
− | When | + | When $ n > 2 $, |
+ | the mean-square error of the biased estimator $ S _ {n} ^ {2} $ | ||
+ | is less than that of the best unbiased estimator $ s _ {n} ^ {2} $. | ||
− | There are situations when unbiased estimators do not exist. For example, there is no unbiased estimator for the absolute value | + | There are situations when unbiased estimators do not exist. For example, there is no unbiased estimator for the absolute value $ | a | $ |
+ | of the mathematical expectation $ a $ | ||
+ | of the normal law $ N _ {1} (a, \sigma ^ {2} ) $, | ||
+ | that is, it is only possible to construct biased estimators for $ | a | $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR></table> |
Latest revision as of 10:59, 29 May 2020
A statistical estimator whose expectation does not coincide with the value being estimated.
Let $ X $ be a random variable taking values in a sampling space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, $ \theta \in \Theta $, and let $ T = T (X) $ be a statistical point estimator of a function $ f ( \theta ) $ defined on the parameter set $ \Theta $. It is assumed that the mathematical expectation $ {\mathsf E} _ \theta \{ T \} $ of $ T $ exists. If the function
$$ b ( \theta ) = \ {\mathsf E} _ \theta \{ T \} - f ( \theta ) = \ {\mathsf E} _ \theta \{ T - f ( \theta ) \} $$
is not identically equal to zero, that is, $ b ( \theta ) \not\equiv 0 $, then $ T $ is called a biased estimator of $ f ( \theta ) $ and $ b ( \theta ) $ is called the bias or systematic error of $ T $.
Example. Let $ X _ {1} \dots X _ {n} $ be mutually-independent random variables with the same normal distribution $ N _ {1} (a, \sigma ^ {2} ) $, and let
$$ \overline{X}\; = \ { \frac{X _ {1} + \dots + X _ {n} }{n} } . $$
Then the statistic
$$ S _ {n} ^ {2} = \ { \frac{1}{n} } \sum _ {i = 1 } ^ { n } (X _ {i} - \overline{X}\; ) ^ {2} $$
is a biased estimator of the variance $ \sigma ^ {2} $ since
$$ {\mathsf E} \{ S _ {n} ^ {2} \} = \ { \frac{n - 1 }{n} } \sigma ^ {2} = \ \sigma ^ {2} - { \frac{\sigma ^ {2} }{n} } , $$
that is, the estimator $ S _ {n} ^ {2} $ has bias $ b ( \sigma ^ {2} ) = - \sigma ^ {2} /n $. The mean-square error of this biased estimator is
$$ {\mathsf E} \{ (S _ {n} ^ {2} - \sigma ^ {2} ) ^ {2} \} = \ \frac{2n - 1 }{n ^ {2} } \sigma ^ {4} . $$
The best unbiased estimator of $ \sigma ^ {2} $ is the statistic
$$ s _ {n} ^ {2} = \ { \frac{n}{n - 1 } } S _ {n} ^ {2} = \ { \frac{1}{n - 1 } } \sum _ {i = 1 } ^ { n } (X _ {i} - \overline{X}\; ) ^ {2} , $$
with mean-square error
$$ {\mathsf D} \{ s _ {n} ^ {2} \} = \ {\mathsf E} \{ (s _ {n} ^ {2} - \sigma ^ {2} ) ^ {2} \} = \ { \frac{2}{n - 1 } } \sigma ^ {4} . $$
When $ n > 2 $, the mean-square error of the biased estimator $ S _ {n} ^ {2} $ is less than that of the best unbiased estimator $ s _ {n} ^ {2} $.
There are situations when unbiased estimators do not exist. For example, there is no unbiased estimator for the absolute value $ | a | $ of the mathematical expectation $ a $ of the normal law $ N _ {1} (a, \sigma ^ {2} ) $, that is, it is only possible to construct biased estimators for $ | a | $.
References
[1] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
Biased estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Biased_estimator&oldid=46049