Difference between revisions of "Best linear unbiased estimator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b1104401.png | ||
+ | $#A+1 = 48 n = 0 | ||
+ | $#C+1 = 48 : ~/encyclopedia/old_files/data/B110/B.1100440 Best linear unbiased estimator, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''BLUE'' | ''BLUE'' | ||
Let | Let | ||
− | + | $$ \tag{a1 } | |
+ | Y = X \beta + \epsilon | ||
+ | $$ | ||
− | be a [[Linear regression|linear regression]] model, where | + | be a [[Linear regression|linear regression]] model, where $ Y $ |
+ | is a random column vector of $ n $" | ||
+ | measurements" , $ X \in \mathbf R ^ {n \times p } $ | ||
+ | is a known non-random "plan" matrix, $ \beta \in \mathbf R ^ {p \times1 } $ | ||
+ | is an unknown vector of the parameters, and $ \epsilon $ | ||
+ | is a random "error" , or "noise" , vector with mean $ {\mathsf E} \epsilon =0 $ | ||
+ | and a possibly unknown non-singular covariance matrix $ V = { \mathop{\rm Var} } ( \epsilon ) $. | ||
+ | A model with linear restrictions on $ \beta $ | ||
+ | can be obviously reduced to (a1). Without loss of generality, $ { \mathop{\rm rank} } ( X ) = p $. | ||
− | Let | + | Let $ K \in \mathbf R ^ {k \times p } $; |
+ | a linear unbiased estimator (LUE) of $ K \beta $ | ||
+ | is a [[Statistical estimator|statistical estimator]] of the form $ MY $ | ||
+ | for some non-random matrix $ M \in \mathbf R ^ {k \times n } $ | ||
+ | such that $ {\mathsf E} MY = K \beta $ | ||
+ | for all $ \beta \in \mathbf R ^ {p \times1 } $, | ||
+ | i.e., $ MX = K $. | ||
+ | A linear [[Unbiased estimator|unbiased estimator]] $ M _ {*} Y $ | ||
+ | of $ K \beta $ | ||
+ | is called a best linear unbiased estimator (BLUE) of $ K \beta $ | ||
+ | if $ { \mathop{\rm Var} } ( M _ {*} Y ) \leq { \mathop{\rm Var} } ( MY ) $ | ||
+ | for all linear unbiased estimators $ MY $ | ||
+ | of $ K \beta $, | ||
+ | i.e., if $ { \mathop{\rm Var} } ( aM _ {*} Y ) \leq { \mathop{\rm Var} } ( aMY ) $ | ||
+ | for all linear unbiased estimators $ MY $ | ||
+ | of $ K \beta $ | ||
+ | and all $ a \in \mathbf R ^ {1 \times k } $. | ||
− | Since it is assumed that | + | Since it is assumed that $ { \mathop{\rm rank} } ( X ) = p $, |
+ | there exists a unique best linear unbiased estimator of $ K \beta $ | ||
+ | for any $ K $. | ||
+ | It is then given by the formula $ K {\widehat \beta } $, | ||
+ | where $ {\widehat \beta } = { {\beta _ {V} } hat } = ( X ^ {T} V ^ {-1 } X ) ^ {-1 } X ^ {T} V ^ {-1 } Y $, | ||
+ | which coincides by the Gauss–Markov theorem (cf. [[Least squares, method of|Least squares, method of]]) with the least square estimator of $ \beta $, | ||
+ | defined as $ { \mathop{\rm arg} } { \mathop{\rm min} } _ \beta ( Y - X \beta ) ^ {T} V ^ {- 1 } ( Y - X \beta ) $; | ||
+ | as usual, $ {} ^ {T} $ | ||
+ | stands for transposition. | ||
− | Because | + | Because $ V = { \mathop{\rm Var} } ( \epsilon ) $ |
+ | is normally not known, Yu.A. Rozanov [[#References|[a2]]] has suggested to use a "pseudo-best" estimator $ { {\beta _ {W} } hat } $ | ||
+ | in place of $ { {\beta _ {V} } hat } $, | ||
+ | with an appropriately chosen $ W $. | ||
+ | This idea has been further developed by A.M. Samarov [[#References|[a3]]] and I.F. Pinelis [[#References|[a4]]]. In particular, Pinelis has obtained duality theorems for the minimax risk and equations for the minimax solutions $ V $ | ||
+ | assumed to belong to an arbitrary known convex set $ {\mathcal V} $ | ||
+ | of positive-definite $ ( n \times n ) $- | ||
+ | matrices with respect to the general quadratic risk function of the form | ||
− | + | $$ | |
+ | R ( V,W ) = {\mathsf E} _ {V} ( {\widehat \beta } _ {W} - \beta ) ^ {T} S ( {\widehat \beta } _ {W} - \beta ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | V \in {\mathcal V}, W \in {\mathcal V}, | ||
+ | $$ | ||
− | where | + | where $ S $ |
+ | is any non-negative-definite $ ( p \times p ) $- | ||
+ | matrix and $ {\mathsf E} _ {V} $ | ||
+ | stands for the expectation assuming $ { \mathop{\rm Var} } ( \epsilon ) = V $. | ||
+ | Asymptotic versions of these results have also been given by Pinelis for the case when the "noise" is a second-order stationary stochastic process with an unknown spectral density belonging to an arbitrary, but known, convex class of spectral densities and by Samarov in the case of contamination classes. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Yu.A. Rozanov, "On a new class of estimates" , ''Multivariate Analysis'' , '''2''' , Acad. Press (1969) pp. 437–441</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A.M. Samarov, "Robust spectral regression" ''Ann. Math. Stat.'' , '''15''' (1987) pp. 99–111</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.F. Pinelis, "On the minimax estimation of regression" ''Th. Probab. Appl.'' , '''35''' (1990) pp. 500–512</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> Yu.A. Rozanov, "On a new class of estimates" , ''Multivariate Analysis'' , '''2''' , Acad. Press (1969) pp. 437–441</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A.M. Samarov, "Robust spectral regression" ''Ann. Math. Stat.'' , '''15''' (1987) pp. 99–111</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.F. Pinelis, "On the minimax estimation of regression" ''Th. Probab. Appl.'' , '''35''' (1990) pp. 500–512</TD></TR></table> |
Revision as of 10:58, 29 May 2020
BLUE
Let
$$ \tag{a1 } Y = X \beta + \epsilon $$
be a linear regression model, where $ Y $ is a random column vector of $ n $" measurements" , $ X \in \mathbf R ^ {n \times p } $ is a known non-random "plan" matrix, $ \beta \in \mathbf R ^ {p \times1 } $ is an unknown vector of the parameters, and $ \epsilon $ is a random "error" , or "noise" , vector with mean $ {\mathsf E} \epsilon =0 $ and a possibly unknown non-singular covariance matrix $ V = { \mathop{\rm Var} } ( \epsilon ) $. A model with linear restrictions on $ \beta $ can be obviously reduced to (a1). Without loss of generality, $ { \mathop{\rm rank} } ( X ) = p $.
Let $ K \in \mathbf R ^ {k \times p } $; a linear unbiased estimator (LUE) of $ K \beta $ is a statistical estimator of the form $ MY $ for some non-random matrix $ M \in \mathbf R ^ {k \times n } $ such that $ {\mathsf E} MY = K \beta $ for all $ \beta \in \mathbf R ^ {p \times1 } $, i.e., $ MX = K $. A linear unbiased estimator $ M _ {*} Y $ of $ K \beta $ is called a best linear unbiased estimator (BLUE) of $ K \beta $ if $ { \mathop{\rm Var} } ( M _ {*} Y ) \leq { \mathop{\rm Var} } ( MY ) $ for all linear unbiased estimators $ MY $ of $ K \beta $, i.e., if $ { \mathop{\rm Var} } ( aM _ {*} Y ) \leq { \mathop{\rm Var} } ( aMY ) $ for all linear unbiased estimators $ MY $ of $ K \beta $ and all $ a \in \mathbf R ^ {1 \times k } $.
Since it is assumed that $ { \mathop{\rm rank} } ( X ) = p $, there exists a unique best linear unbiased estimator of $ K \beta $ for any $ K $. It is then given by the formula $ K {\widehat \beta } $, where $ {\widehat \beta } = { {\beta _ {V} } hat } = ( X ^ {T} V ^ {-1 } X ) ^ {-1 } X ^ {T} V ^ {-1 } Y $, which coincides by the Gauss–Markov theorem (cf. Least squares, method of) with the least square estimator of $ \beta $, defined as $ { \mathop{\rm arg} } { \mathop{\rm min} } _ \beta ( Y - X \beta ) ^ {T} V ^ {- 1 } ( Y - X \beta ) $; as usual, $ {} ^ {T} $ stands for transposition.
Because $ V = { \mathop{\rm Var} } ( \epsilon ) $ is normally not known, Yu.A. Rozanov [a2] has suggested to use a "pseudo-best" estimator $ { {\beta _ {W} } hat } $ in place of $ { {\beta _ {V} } hat } $, with an appropriately chosen $ W $. This idea has been further developed by A.M. Samarov [a3] and I.F. Pinelis [a4]. In particular, Pinelis has obtained duality theorems for the minimax risk and equations for the minimax solutions $ V $ assumed to belong to an arbitrary known convex set $ {\mathcal V} $ of positive-definite $ ( n \times n ) $- matrices with respect to the general quadratic risk function of the form
$$ R ( V,W ) = {\mathsf E} _ {V} ( {\widehat \beta } _ {W} - \beta ) ^ {T} S ( {\widehat \beta } _ {W} - \beta ) , $$
$$ V \in {\mathcal V}, W \in {\mathcal V}, $$
where $ S $ is any non-negative-definite $ ( p \times p ) $- matrix and $ {\mathsf E} _ {V} $ stands for the expectation assuming $ { \mathop{\rm Var} } ( \epsilon ) = V $. Asymptotic versions of these results have also been given by Pinelis for the case when the "noise" is a second-order stationary stochastic process with an unknown spectral density belonging to an arbitrary, but known, convex class of spectral densities and by Samarov in the case of contamination classes.
References
[a1] | C.R. Rao, "Linear statistical inference and its applications" , Wiley (1965) |
[a2] | Yu.A. Rozanov, "On a new class of estimates" , Multivariate Analysis , 2 , Acad. Press (1969) pp. 437–441 |
[a3] | A.M. Samarov, "Robust spectral regression" Ann. Math. Stat. , 15 (1987) pp. 99–111 |
[a4] | I.F. Pinelis, "On the minimax estimation of regression" Th. Probab. Appl. , 35 (1990) pp. 500–512 |
Best linear unbiased estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Best_linear_unbiased_estimator&oldid=46043