Difference between revisions of "Bessel polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b1104101.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/B110/B.1100410 Bessel polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | Related to [[Bessel functions|Bessel functions]], [[#References|[a2]]], the Bessel polynomials $ \{ y _ {n} ( x,a,b ) \} _ {n = 0 } ^ \infty $ | ||
+ | satisfy | ||
+ | |||
+ | $$ | ||
+ | x ^ {2} y ^ {\prime \prime } + ( ax + b ) y _ {n} ^ \prime - n ( n + a - 1 ) y = 0 | ||
+ | $$ | ||
and are given by | and are given by | ||
− | + | $$ | |
+ | y _ {n} ( x,a,b ) = \sum _ {k = 0 } ^ { n } { | ||
+ | \frac{n! \Gamma ( n + k + a - 1 ) ( {x / b } ) ^ {k} }{k! ( n - k ) ! \Gamma ( n + a - 1 ) } | ||
+ | } . | ||
+ | $$ | ||
− | The ordinary Bessel polynomials are those found with | + | The ordinary Bessel polynomials are those found with $ a = b = 2 $, |
+ | [[#References|[a2]]]. | ||
The moments associated with the Bessel polynomials satisfy | The moments associated with the Bessel polynomials satisfy | ||
− | + | $$ | |
+ | ( n + a - 1 ) \mu _ {n} + b \mu _ {n - 1 } = 0, \quad n =0,1 \dots | ||
+ | $$ | ||
− | and are given by | + | and are given by $ \mu _ {n} = { {( - b ) ^ {n + 1 } } / {a ( a + 1 ) \dots ( a + n - 1 ) } } $. |
The weight equation is | The weight equation is | ||
− | + | $$ | |
+ | x ^ {2} w ^ \prime + ( ( 2 - a ) x - b ) w = N ( x ) , | ||
+ | $$ | ||
− | where | + | where $ N ( x ) $ |
+ | is any function with $ 0 $ | ||
+ | moments. This equation has been solved when | ||
− | + | $$ | |
+ | N ( x ) = H ( x ) e ^ {- x ^ { {1 / 4 } } } { \mathop{\rm sn} } x ^ { {1 / 4 } } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | H ( x ) = \left \{ | ||
+ | \begin{array}{l} | ||
+ | {1, \ x \geq 0, } \\ | ||
+ | {0, \ x < 0, } | ||
+ | \end{array} | ||
+ | \right . | ||
+ | $$ | ||
− | when | + | when $ b = 2 $( |
+ | no restriction), $ a - 2 = 2 \alpha $ | ||
+ | and $ \alpha > 6 ( {2 / \pi } ) ^ {4} $, | ||
+ | [[#References|[a3]]]. The weight for the ordinary Bessel polynomials was found by S.S. Kim, K.H. Kwon and S.S. Han, [[#References|[a1]]], after over 40 years of search. | ||
Using the three-term recurrence relation | Using the three-term recurrence relation | ||
− | + | $$ | |
+ | ( n + a - 1 ) ( 2n + a - 2 ) y _ {n + 1 } ( x,a,b ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | \left [ ( 2n + a ) ( 2n + a - 2 ) \left ( { | ||
+ | \frac{x}{b} | ||
+ | } \right ) + ( a - 2 ) \right ] \cdot | ||
+ | $$ | ||
− | + | $$ | |
+ | \cdot | ||
+ | ( 2n + a - 1 ) y _ {n} + n ( 2n + a ) y _ {n - 1 } , | ||
+ | $$ | ||
− | the norm square | + | the norm square $ \int _ {0} ^ \infty {g _ {n} ( x,a,b ) ^ {2} w ( x ) } {dx } $ |
+ | is easily calculated and equals $ { {( - b ) ^ {k + 1 } k ^ {( n ) } } / {( k + a + n _ {1} ) ^ {( k + n ) } } } $, | ||
+ | [[#References|[a2]]], where $ x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) $. | ||
+ | Clearly, $ w $ | ||
+ | generates a [[Krein space|Krein space]] on $ [ 0, \infty ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.S. Kim, K.H. Kwon, S.S. Han, "Orthogonalizing weights of Tchebychev sets of polynomials" ''Bull. London Math. Soc.'' , '''24''' (1992) pp. 361–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.L. Krall, O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials" ''Trans. Amer. Math. Soc.'' , '''63''' (1949) pp. 100–115</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Maroni, "An integral representation for the Bessel form" ''J. Comp. Appl. Math.'' , '''57''' (1995) pp. 251–260</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.S. Kim, K.H. Kwon, S.S. Han, "Orthogonalizing weights of Tchebychev sets of polynomials" ''Bull. London Math. Soc.'' , '''24''' (1992) pp. 361–367</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.L. Krall, O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials" ''Trans. Amer. Math. Soc.'' , '''63''' (1949) pp. 100–115</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Maroni, "An integral representation for the Bessel form" ''J. Comp. Appl. Math.'' , '''57''' (1995) pp. 251–260</TD></TR></table> |
Latest revision as of 10:58, 29 May 2020
Related to Bessel functions, [a2], the Bessel polynomials $ \{ y _ {n} ( x,a,b ) \} _ {n = 0 } ^ \infty $
satisfy
$$ x ^ {2} y ^ {\prime \prime } + ( ax + b ) y _ {n} ^ \prime - n ( n + a - 1 ) y = 0 $$
and are given by
$$ y _ {n} ( x,a,b ) = \sum _ {k = 0 } ^ { n } { \frac{n! \Gamma ( n + k + a - 1 ) ( {x / b } ) ^ {k} }{k! ( n - k ) ! \Gamma ( n + a - 1 ) } } . $$
The ordinary Bessel polynomials are those found with $ a = b = 2 $, [a2].
The moments associated with the Bessel polynomials satisfy
$$ ( n + a - 1 ) \mu _ {n} + b \mu _ {n - 1 } = 0, \quad n =0,1 \dots $$
and are given by $ \mu _ {n} = { {( - b ) ^ {n + 1 } } / {a ( a + 1 ) \dots ( a + n - 1 ) } } $.
The weight equation is
$$ x ^ {2} w ^ \prime + ( ( 2 - a ) x - b ) w = N ( x ) , $$
where $ N ( x ) $ is any function with $ 0 $ moments. This equation has been solved when
$$ N ( x ) = H ( x ) e ^ {- x ^ { {1 / 4 } } } { \mathop{\rm sn} } x ^ { {1 / 4 } } , $$
where
$$ H ( x ) = \left \{ \begin{array}{l} {1, \ x \geq 0, } \\ {0, \ x < 0, } \end{array} \right . $$
when $ b = 2 $( no restriction), $ a - 2 = 2 \alpha $ and $ \alpha > 6 ( {2 / \pi } ) ^ {4} $, [a3]. The weight for the ordinary Bessel polynomials was found by S.S. Kim, K.H. Kwon and S.S. Han, [a1], after over 40 years of search.
Using the three-term recurrence relation
$$ ( n + a - 1 ) ( 2n + a - 2 ) y _ {n + 1 } ( x,a,b ) = $$
$$ = \left [ ( 2n + a ) ( 2n + a - 2 ) \left ( { \frac{x}{b} } \right ) + ( a - 2 ) \right ] \cdot $$
$$ \cdot ( 2n + a - 1 ) y _ {n} + n ( 2n + a ) y _ {n - 1 } , $$
the norm square $ \int _ {0} ^ \infty {g _ {n} ( x,a,b ) ^ {2} w ( x ) } {dx } $ is easily calculated and equals $ { {( - b ) ^ {k + 1 } k ^ {( n ) } } / {( k + a + n _ {1} ) ^ {( k + n ) } } } $, [a2], where $ x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) $. Clearly, $ w $ generates a Krein space on $ [ 0, \infty ) $.
References
[a1] | S.S. Kim, K.H. Kwon, S.S. Han, "Orthogonalizing weights of Tchebychev sets of polynomials" Bull. London Math. Soc. , 24 (1992) pp. 361–367 |
[a2] | H.L. Krall, O. Frink, "A new class of orthogonal polynomials: The Bessel polynomials" Trans. Amer. Math. Soc. , 63 (1949) pp. 100–115 |
[a3] | P. Maroni, "An integral representation for the Bessel form" J. Comp. Appl. Math. , 57 (1995) pp. 251–260 |
Bessel polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_polynomials&oldid=46035