Difference between revisions of "Baer multiplication"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | b0150201.png | ||
| + | $#A+1 = 20 n = 0 | ||
| + | $#C+1 = 20 : ~/encyclopedia/old_files/data/B015/B.0105020 Baer multiplication | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| + | |||
| + | A binary operation on the set of classes of [[Extension of a module|extensions of modules]], proposed by R. Baer [[#References|[1]]]. Let $ A $ | ||
| + | and $ B $ | ||
| + | be arbitrary modules. An extension of $ A $ | ||
| + | with kernel $ B $ | ||
| + | is an [[exact sequence]]: | ||
| + | |||
| + | $$ \tag{1 } | ||
| + | 0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0. | ||
| + | $$ | ||
The extension (1) is called ''equivalent'' to the extension | The extension (1) is called ''equivalent'' to the extension | ||
| − | + | $$ | |
| + | 0 \rightarrow B \rightarrow X _ {1} \rightarrow A \rightarrow 0 | ||
| + | $$ | ||
| + | |||
| + | if there exists a homomorphism $ \alpha : X \rightarrow X _ {1} $ | ||
| + | forming part of the commutative diagram | ||
| + | |||
| + | $$ | ||
| − | + | \begin{array}{ccccc} | |
| + | {} &{} & X &{} &{} \\ | ||
| + | {} &\nearrow &{} &\searrow &{} \\ | ||
| + | B &{} &\downarrow &{} & A \\ | ||
| + | {} &\searrow &{} &\nearrow &{} \\ | ||
| + | {} &{} &X _ {1} &{} &{} \\ | ||
| + | \end{array} | ||
| − | + | $$ | |
| − | The set of equivalence classes of extensions is denoted by | + | The set of equivalence classes of extensions is denoted by $ \mathop{\rm Ext} (A, B) $. |
| + | The Baer multiplication on $ \mathop{\rm Ext} (A, B) $ | ||
| + | is induced by the operation of products of extensions defined as follows. Let | ||
| − | + | $$ \tag{2 } | |
| + | 0 \rightarrow B \mathop \rightarrow \limits ^ \beta X \mathop \rightarrow \limits ^ \alpha A \rightarrow 0, | ||
| + | $$ | ||
| − | + | $$ \tag{3 } | |
| + | 0 \rightarrow B \rightarrow ^ { {\beta _ 1} } Y \rightarrow ^ { {\alpha _ 1} } A \rightarrow 0 | ||
| + | $$ | ||
| − | be two extensions. In the direct sum | + | be two extensions. In the direct sum $ X \oplus Y $ |
| + | the submodules | ||
| − | + | $$ | |
| + | C = \{ {(x, y) } : { | ||
| + | \alpha (x) = \alpha _ {1} (y) } \} | ||
| + | $$ | ||
and | and | ||
| − | + | $$ | |
| + | D = \{ {(-x, y) } : { | ||
| + | x = \beta (b),\ | ||
| + | y = \beta _ {1} (b) } \} | ||
| + | $$ | ||
| − | are selected. Clearly, | + | are selected. Clearly, $ D \subset C $, |
| + | so that one can define the quotient module $ Z = C/D $. | ||
| + | The Baer product of the extensions (2) and (3) is the extension | ||
| − | + | $$ | |
| + | 0 \rightarrow B \rightarrow ^ { {\beta _ 2} } Z \rightarrow ^ { {\alpha _ 2} } A \rightarrow 0, | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| + | \beta _ {2} (b) = \ | ||
| + | [ \beta (b), 0] = \ | ||
| + | [0, \beta ^ \prime (b)], | ||
| + | $$ | ||
and | and | ||
| − | + | $$ | |
| + | \alpha _ {2} [x, y] = \ | ||
| + | \alpha (x) = \ | ||
| + | \alpha _ {1} (y). | ||
| + | $$ | ||
====References==== | ====References==== | ||
Latest revision as of 10:26, 27 April 2020
A binary operation on the set of classes of extensions of modules, proposed by R. Baer [1]. Let $ A $
and $ B $
be arbitrary modules. An extension of $ A $
with kernel $ B $
is an exact sequence:
$$ \tag{1 } 0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0. $$
The extension (1) is called equivalent to the extension
$$ 0 \rightarrow B \rightarrow X _ {1} \rightarrow A \rightarrow 0 $$
if there exists a homomorphism $ \alpha : X \rightarrow X _ {1} $ forming part of the commutative diagram
$$ \begin{array}{ccccc} {} &{} & X &{} &{} \\ {} &\nearrow &{} &\searrow &{} \\ B &{} &\downarrow &{} & A \\ {} &\searrow &{} &\nearrow &{} \\ {} &{} &X _ {1} &{} &{} \\ \end{array} $$
The set of equivalence classes of extensions is denoted by $ \mathop{\rm Ext} (A, B) $. The Baer multiplication on $ \mathop{\rm Ext} (A, B) $ is induced by the operation of products of extensions defined as follows. Let
$$ \tag{2 } 0 \rightarrow B \mathop \rightarrow \limits ^ \beta X \mathop \rightarrow \limits ^ \alpha A \rightarrow 0, $$
$$ \tag{3 } 0 \rightarrow B \rightarrow ^ { {\beta _ 1} } Y \rightarrow ^ { {\alpha _ 1} } A \rightarrow 0 $$
be two extensions. In the direct sum $ X \oplus Y $ the submodules
$$ C = \{ {(x, y) } : { \alpha (x) = \alpha _ {1} (y) } \} $$
and
$$ D = \{ {(-x, y) } : { x = \beta (b),\ y = \beta _ {1} (b) } \} $$
are selected. Clearly, $ D \subset C $, so that one can define the quotient module $ Z = C/D $. The Baer product of the extensions (2) and (3) is the extension
$$ 0 \rightarrow B \rightarrow ^ { {\beta _ 2} } Z \rightarrow ^ { {\alpha _ 2} } A \rightarrow 0, $$
where
$$ \beta _ {2} (b) = \ [ \beta (b), 0] = \ [0, \beta ^ \prime (b)], $$
and
$$ \alpha _ {2} [x, y] = \ \alpha (x) = \ \alpha _ {1} (y). $$
References
| [1] | R. Baer, "Erweiterung von Gruppen und ihren Isomorphismen" Math. Z. , 38 (1934) pp. 374–416 |
| [2] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
Baer multiplication. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Baer_multiplication&oldid=45581