Namespaces
Variants
Actions

Difference between revisions of "Area principle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The area of the complement to the image of a domain under a mapping by a function regular in it is non-negative. The area principle was first used in 1914 by T.H. Gronwall [[#References|[1]]], who in this way proved the so-called exterior area theorem for functions of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132201.png" /> — functions
+
<!--
 +
a0132201.png
 +
$#A+1 = 68 n = 1
 +
$#C+1 = 68 : ~/encyclopedia/old_files/data/A013/A.0103220 Area principle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132202.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
that are regular and univalent in the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132203.png" /> (cf. [[Univalent function|Univalent function]]). The area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132204.png" /> of the complement of the image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132205.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132206.png" /> under a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132207.png" /> can be determined by the formula
+
The area of the complement to the image of a domain under a mapping by a function regular in it is non-negative. The area principle was first used in 1914 by T.H. Gronwall [[#References|[1]]], who in this way proved the so-called exterior area theorem for functions of class  $  \Sigma $—
 +
functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132208.png" /></td> </tr></table>
+
$$
 +
F (z)  = z + \alpha _ {0} +
 +
\frac{\alpha _ {1} }{z}
 +
+ \dots ,
 +
$$
 +
 
 +
that are regular and univalent in the annulus  $  \Delta  ^  \prime  = \{ {z } : {1 < | z | < \infty } \} $(
 +
cf. [[Univalent function|Univalent function]]). The area  $  \sigma ( C F ( \Delta  ^  \prime  ) ) $
 +
of the complement of the image  $  F ( \Delta  ^  \prime  ) $
 +
of  $  \Delta  ^  \prime  $
 +
under a mapping  $  w = F (z) \in \Sigma $
 +
can be determined by the formula
 +
 
 +
$$
 +
\sigma ( C F ( \Delta  ^  \prime  ) )  = \pi
 +
\left (
 +
1 - \sum _ { k=1 } ^  \infty 
 +
k  | \alpha _ {k} |  ^ {2}
 +
\right )
 +
\geq  0
 +
$$
  
 
and consequently
 
and consequently
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a0132209.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\sum _ { k=1 } ^  \infty 
 +
k  | \alpha _ {k} |  ^ {2}
 +
\leq  1 .
 +
$$
  
By means of (1) the first results were obtained for functions of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322012.png" /> is the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322013.png" /> that are regular and univalent in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322014.png" /> (cf. [[Bieberbach conjecture|Bieberbach conjecture]]; [[Distortion theorems|Distortion theorems]]). A more general area theorem has been proved [[#References|[2]]]. G.M. Goluzin [[#References|[3]]] extended the area theorem to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322015.png" />-valent functions in the disc (cf. [[Multivalent function|Multivalent function]]).
+
By means of (1) the first results were obtained for functions of the classes $  \Sigma $
 +
and $  S $,  
 +
where $  S $
 +
is the class of functions $  f (z) = z + \sum _ {k=2}  ^  \infty  a _ {k} z  ^ {k} $
 +
that are regular and univalent in the disc $  \Delta = \{ {z } : {| z | < 1 } \} $(
 +
cf. [[Bieberbach conjecture|Bieberbach conjecture]]; [[Distortion theorems|Distortion theorems]]). A more general area theorem has been proved [[#References|[2]]]. G.M. Goluzin [[#References|[3]]] extended the area theorem to $  p $-
 +
valent functions in the disc (cf. [[Multivalent function|Multivalent function]]).
  
The following area theorem has been proved [[#References|[4]]]: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322017.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322018.png" /> be a regular function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322019.png" />. If
+
The following area theorem has been proved [[#References|[4]]]: Let $  F \in \Sigma $,  
 +
$  \overline{B}\; = C F ( \Delta  ^  \prime  ) $,  
 +
and let $  Q (w) $
 +
be a regular function in $  \overline{B}\; $.  
 +
If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322020.png" /></td> </tr></table>
+
$$
 +
Q ( F (z) )  = \
 +
\sum _ {k = - \infty } ^ { {+ }  \infty }
 +
\alpha _ {k} z  ^ {-k}
 +
\not\equiv  \textrm{ const } ;
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\sum _ {k = - \infty } ^ { {+ }  \infty }
 +
k  | \alpha _ {k} |  ^ {2}
 +
\leq  0,
 +
$$
 +
 
 +
and equality holds only if the area  $  \sigma ( \overline{B}\; ) $
 +
of  $  \overline{B}\; $
 +
is zero.
 +
 
 +
By the area theorem for a certain class of univalent functions  $  f (z) $,
 +
$  z \in B $,
 +
with  $  B $
 +
a domain, one usually understands any inequality having the property that equality holds if and only if the area of the complement  $  \overline{G}\; $
 +
of  $  f (B) $
 +
is zero, and the same applies for a class of systems of univalent functions  $  \{ {f _ {k} (z) } : {z \in B _ {k} } \} _ {k=0}  ^ {n} ,  n = 1 , 2 \dots $
 +
where  $  B _ {k} $
 +
is a domain and  $  \overline{G}\; $
 +
is the complement of  $  \cup _ {k=0}  ^ {n} f _ {k} (B _ {f} ) $.  
 +
Usually, such a theorem is proved by means of the area principle. That is, one considers any regular function  $  Q (w) $,
 +
or more generally, one having a regular derivative, on  $  \overline{G}\; $
 +
and calculates the area  $  \sigma ( Q ( \overline{G}\; ) ) $
 +
of the image of  $  \overline{G}\; $
 +
under the mapping of the function  $  Q $.
 +
Therefore, (2) is a certain extremely general area theorem in the class  $  \Sigma $.
  
and equality holds only if the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322023.png" /> is zero.
+
Let  $  F \in \Sigma $
 +
and let
  
By the area theorem for a certain class of univalent functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322025.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322026.png" /> a domain, one usually understands any inequality having the property that equality holds if and only if the area of the complement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322028.png" /> is zero, and the same applies for a class of systems of univalent functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322029.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322030.png" /> is a domain and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322031.png" /> is the complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322032.png" />. Usually, such a theorem is proved by means of the area principle. That is, one considers any regular function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322033.png" />, or more generally, one having a regular derivative, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322034.png" /> and calculates the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322035.png" /> of the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322036.png" /> under the mapping of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322037.png" />. Therefore, (2) is a certain extremely general area theorem in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322038.png" />.
+
$$
 +
\mathop{\rm ln} \
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322039.png" /> and let
+
\frac{F (t) - F (z) }{t - z }
 +
  = \
 +
\sum _ { p,q=1 } ^  \infty 
 +
\omega _ {p,q} t  ^ {-p} z  ^ {-q} ,\  t , z \in \Delta  ^  \prime  .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322040.png" /></td> </tr></table>
+
One chooses a suitable function, regular in  $  C F ( \Delta  ^  \prime  ) $,
 +
to be able to write (2) as
  
One chooses a suitable function, regular in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322041.png" />, to be able to write (2) as
+
$$ \tag{3 }
 +
\sum _ { q=1 } ^  \infty 
 +
q  \left |
 +
\sum _ { p=1 } ^  \infty  \omega _ {p,q} x _ {p} \right |  ^ {2}
 +
\leq  \
 +
\sum _ { p=1 } ^  \infty 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac{1}{p}
 +
\
 +
| x _ {p} |  ^ {2} ,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322043.png" /> are any numbers not simultaneously equal to zero and such that
+
where the $  x _ {p} $
 +
are any numbers not simultaneously equal to zero and such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322044.png" /></td> </tr></table>
+
$$
 +
\overline{\lim\limits}\;
 +
_ {p \rightarrow \infty } \
 +
| x _ {p} |  ^ {1/p}
 +
< 1 .
 +
$$
  
More general area theorems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322045.png" /> have also been obtained [[#References|[5]]].
+
More general area theorems in $  \Sigma $
 +
have also been obtained [[#References|[5]]].
  
Area theorems have been proved for the following: the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322046.png" /> of systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322047.png" /> of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322048.png" /> that map the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322049.png" /> conformally and univalently onto domains without pairwise common points, i.e. onto non-adjacent domains [[#References|[6]]]; the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322050.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322052.png" />, is the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322053.png" /> that are regular and univalent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322054.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322056.png" />), [[#References|[7]]]; and non-overlapping multiple-connected domains (see [[#References|[6]]] and also [[#References|[8]]], [[#References|[9]]]). All the area theorems for multiple-connected domains can be proved by the method of contour integration (cf. [[Contour integration, method of|Contour integration, method of]]).
+
Area theorems have been proved for the following: the class $  \mathfrak M ( a _ {1} \dots a _ {n} ) $
 +
of systems $  \{ {f _ {k} (z) } : {f _ {k} (0) = a _ {k} ,  z \in \Delta } \} _ {k=1}  ^ {n} $
 +
of functions $  f _ {k} $
 +
that map the disc $  \Delta $
 +
conformally and univalently onto domains without pairwise common points, i.e. onto non-adjacent domains [[#References|[6]]]; the class $  \Sigma (B) $(
 +
$  \Sigma (B) $,  
 +
$  B \ni \infty $,  
 +
is the class of functions $  F $
 +
that are regular and univalent in $  B \setminus  \{ \infty \} $
 +
and such that $  F ( \infty ) = \infty $,
 +
$  \lim\limits _ {z \rightarrow \infty }  {F (z) } / z = 1 $),  
 +
[[#References|[7]]]; and non-overlapping multiple-connected domains (see [[#References|[6]]] and also [[#References|[8]]], [[#References|[9]]]). All the area theorems for multiple-connected domains can be proved by the method of contour integration (cf. [[Contour integration, method of|Contour integration, method of]]).
  
 
By the area method one understands methods of solving various problems in the theory of univalent functions by the use of area theorems.
 
By the area method one understands methods of solving various problems in the theory of univalent functions by the use of area theorems.
Line 45: Line 150:
 
For instance, from (3) one may obtain by means of the Cauchy inequality that
 
For instance, from (3) one may obtain by means of the Cauchy inequality that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\left |
 +
\sum _ { p,q=1 } ^  \infty 
 +
\omega _ {p,q} x _ {p} x _ {q}  ^  \prime
 +
\right |  ^ {2}
 +
\leq  \
 +
\sum _ { p=1 } ^  \infty 
 +
 
 +
\frac{1}{p}
 +
\
 +
| x _ {p} |  ^ {2}
 +
\sum _ { q=1 } ^  \infty 
 +
 
 +
\frac{1}{q}
 +
\
 +
| x _ {q}  ^  \prime  |  ^ {2} ,
 +
$$
 +
 
 +
where  $  x _ {p} $
 +
and  $  x _ {q}  ^  \prime  $
 +
are such that the series on the right-hand side converge. If in (4), for example,  $  x _ {p} = t  ^ {-p} $,
 +
$  x _ {q}  ^  \prime  = z  ^ {-q} $,
 +
$  | t | > 1 $,
 +
$  | z | > 1 $,
 +
one obtains the chord-distortion theorem
 +
 
 +
$$
 +
\left |  \mathop{\rm ln} \
 +
 
 +
\frac{F (t) - F (z) }{t - z }
 +
 
 +
\right |  ^ {2}
 +
\leq    \mathop{\rm ln} \
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322059.png" /> are such that the series on the right-hand side converge. If in (4), for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322063.png" />, one obtains the chord-distortion theorem
+
\frac{| t |  ^ {2} }{| t |  ^ {2} -1 }
 +
\
 +
\mathop{\rm ln} \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322064.png" /></td> </tr></table>
+
\frac{| z |  ^ {2} }{| z |  ^ {2} - 1 }
 +
.
 +
$$
  
Area theorems, for example in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322065.png" />, give necessary and sufficient conditions for a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322066.png" /> of meromorphic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322067.png" /> to belong to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322068.png" /> (see [[#References|[6]]], p. 179).
+
Area theorems, for example in the class $  \mathfrak M ( a _ {1} \dots a _ {n} ) $,  
 +
give necessary and sufficient conditions for a system $  \{ {f _ {k} (z) } : {f _ {k} (0) = a _ {k} ,  z \in \Delta } \} _ {k=1}  ^ {n} $
 +
of meromorphic functions $  f _ {k} $
 +
to belong to the class $  \mathfrak M ( a _ {1} \dots a _ {n} ) $(
 +
see [[#References|[6]]], p. 179).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T.H. Gronwall,  "Some remarks on conformal representation"  ''Ann. of Math. Ser. 2'' , '''16'''  (1914 - 1915)  pp. 72–76</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Prawitz,  "Ueber Mittelwerte analytischer Funktionen"  ''Arkiv. Mat. Astron., Fysik'' , '''20A''' :  6  (1927)  pp. 1–12</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322069.png" />-valued functions"  ''Math. Sb.'' , '''8''' :  2  (1940)  pp. 277–284  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.A. Lebedev,  I.M. Milin,  "On the coefficients of certain classes of analytic functions"  ''Mat. Sb.'' , '''28''' :  2  (1951)  pp. 359–400  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Z. Nehari,  "Inequalities for the coefficients of univalent functions"  ''Arch. Rational Mech. and Anal.'' , '''34''' :  4  (1969)  pp. 301–330</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  N.A. Lebedev,  "The area principle in the theory of univalent functions" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.M. Milin,  "Univalent functions and orthonormal systems" , ''Transl. Math. Monogr.'' , '''49''' , Amer. Math. Soc.  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  Yu.E. Alenitsyn,  "Area theorems for functions that are analytic in a finitely-connected domain"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' :  5  (1973)  pp. 1132–1154  (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  V.Ya. Gultyanskii,  V.A. Shchepetov,  "A general area theorem for a certain class of q-quasi-conformal mappings"  ''Dokl. Akad. Nauk SSSR'' , '''218''' :  3  (1974)  pp. 509–512  (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  H. Grunsky,  "Koeffizientenbedingungen für schlichtabbildender meromorphe Funktionen"  ''Math. Z.'' , '''45''' :  1  (1939)  pp. 29–61</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  T.H. Gronwall,  "Some remarks on conformal representation"  ''Ann. of Math. Ser. 2'' , '''16'''  (1914 - 1915)  pp. 72–76</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Prawitz,  "Ueber Mittelwerte analytischer Funktionen"  ''Arkiv. Mat. Astron., Fysik'' , '''20A''' :  6  (1927)  pp. 1–12</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.M. Goluzin,  "On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013220/a01322069.png" />-valued functions"  ''Math. Sb.'' , '''8''' :  2  (1940)  pp. 277–284  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.A. Lebedev,  I.M. Milin,  "On the coefficients of certain classes of analytic functions"  ''Mat. Sb.'' , '''28''' :  2  (1951)  pp. 359–400  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Z. Nehari,  "Inequalities for the coefficients of univalent functions"  ''Arch. Rational Mech. and Anal.'' , '''34''' :  4  (1969)  pp. 301–330</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  N.A. Lebedev,  "The area principle in the theory of univalent functions" , Moscow  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.M. Milin,  "Univalent functions and orthonormal systems" , ''Transl. Math. Monogr.'' , '''49''' , Amer. Math. Soc.  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  Yu.E. Alenitsyn,  "Area theorems for functions that are analytic in a finitely-connected domain"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' :  5  (1973)  pp. 1132–1154  (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  V.Ya. Gultyanskii,  V.A. Shchepetov,  "A general area theorem for a certain class of q-quasi-conformal mappings"  ''Dokl. Akad. Nauk SSSR'' , '''218''' :  3  (1974)  pp. 509–512  (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  H. Grunsky,  "Koeffizientenbedingungen für schlichtabbildender meromorphe Funktionen"  ''Math. Z.'' , '''45''' :  1  (1939)  pp. 29–61</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 18:48, 5 April 2020


The area of the complement to the image of a domain under a mapping by a function regular in it is non-negative. The area principle was first used in 1914 by T.H. Gronwall [1], who in this way proved the so-called exterior area theorem for functions of class $ \Sigma $— functions

$$ F (z) = z + \alpha _ {0} + \frac{\alpha _ {1} }{z} + \dots , $$

that are regular and univalent in the annulus $ \Delta ^ \prime = \{ {z } : {1 < | z | < \infty } \} $( cf. Univalent function). The area $ \sigma ( C F ( \Delta ^ \prime ) ) $ of the complement of the image $ F ( \Delta ^ \prime ) $ of $ \Delta ^ \prime $ under a mapping $ w = F (z) \in \Sigma $ can be determined by the formula

$$ \sigma ( C F ( \Delta ^ \prime ) ) = \pi \left ( 1 - \sum _ { k=1 } ^ \infty k | \alpha _ {k} | ^ {2} \right ) \geq 0 $$

and consequently

$$ \tag{1 } \sum _ { k=1 } ^ \infty k | \alpha _ {k} | ^ {2} \leq 1 . $$

By means of (1) the first results were obtained for functions of the classes $ \Sigma $ and $ S $, where $ S $ is the class of functions $ f (z) = z + \sum _ {k=2} ^ \infty a _ {k} z ^ {k} $ that are regular and univalent in the disc $ \Delta = \{ {z } : {| z | < 1 } \} $( cf. Bieberbach conjecture; Distortion theorems). A more general area theorem has been proved [2]. G.M. Goluzin [3] extended the area theorem to $ p $- valent functions in the disc (cf. Multivalent function).

The following area theorem has been proved [4]: Let $ F \in \Sigma $, $ \overline{B}\; = C F ( \Delta ^ \prime ) $, and let $ Q (w) $ be a regular function in $ \overline{B}\; $. If

$$ Q ( F (z) ) = \ \sum _ {k = - \infty } ^ { {+ } \infty } \alpha _ {k} z ^ {-k} \not\equiv \textrm{ const } ; $$

then

$$ \tag{2 } \sum _ {k = - \infty } ^ { {+ } \infty } k | \alpha _ {k} | ^ {2} \leq 0, $$

and equality holds only if the area $ \sigma ( \overline{B}\; ) $ of $ \overline{B}\; $ is zero.

By the area theorem for a certain class of univalent functions $ f (z) $, $ z \in B $, with $ B $ a domain, one usually understands any inequality having the property that equality holds if and only if the area of the complement $ \overline{G}\; $ of $ f (B) $ is zero, and the same applies for a class of systems of univalent functions $ \{ {f _ {k} (z) } : {z \in B _ {k} } \} _ {k=0} ^ {n} , n = 1 , 2 \dots $ where $ B _ {k} $ is a domain and $ \overline{G}\; $ is the complement of $ \cup _ {k=0} ^ {n} f _ {k} (B _ {f} ) $. Usually, such a theorem is proved by means of the area principle. That is, one considers any regular function $ Q (w) $, or more generally, one having a regular derivative, on $ \overline{G}\; $ and calculates the area $ \sigma ( Q ( \overline{G}\; ) ) $ of the image of $ \overline{G}\; $ under the mapping of the function $ Q $. Therefore, (2) is a certain extremely general area theorem in the class $ \Sigma $.

Let $ F \in \Sigma $ and let

$$ \mathop{\rm ln} \ \frac{F (t) - F (z) }{t - z } = \ \sum _ { p,q=1 } ^ \infty \omega _ {p,q} t ^ {-p} z ^ {-q} ,\ t , z \in \Delta ^ \prime . $$

One chooses a suitable function, regular in $ C F ( \Delta ^ \prime ) $, to be able to write (2) as

$$ \tag{3 } \sum _ { q=1 } ^ \infty q \left | \sum _ { p=1 } ^ \infty \omega _ {p,q} x _ {p} \right | ^ {2} \leq \ \sum _ { p=1 } ^ \infty \frac{1}{p} \ | x _ {p} | ^ {2} , $$

where the $ x _ {p} $ are any numbers not simultaneously equal to zero and such that

$$ \overline{\lim\limits}\; _ {p \rightarrow \infty } \ | x _ {p} | ^ {1/p} < 1 . $$

More general area theorems in $ \Sigma $ have also been obtained [5].

Area theorems have been proved for the following: the class $ \mathfrak M ( a _ {1} \dots a _ {n} ) $ of systems $ \{ {f _ {k} (z) } : {f _ {k} (0) = a _ {k} , z \in \Delta } \} _ {k=1} ^ {n} $ of functions $ f _ {k} $ that map the disc $ \Delta $ conformally and univalently onto domains without pairwise common points, i.e. onto non-adjacent domains [6]; the class $ \Sigma (B) $( $ \Sigma (B) $, $ B \ni \infty $, is the class of functions $ F $ that are regular and univalent in $ B \setminus \{ \infty \} $ and such that $ F ( \infty ) = \infty $, $ \lim\limits _ {z \rightarrow \infty } {F (z) } / z = 1 $), [7]; and non-overlapping multiple-connected domains (see [6] and also [8], [9]). All the area theorems for multiple-connected domains can be proved by the method of contour integration (cf. Contour integration, method of).

By the area method one understands methods of solving various problems in the theory of univalent functions by the use of area theorems.

For instance, from (3) one may obtain by means of the Cauchy inequality that

$$ \tag{4 } \left | \sum _ { p,q=1 } ^ \infty \omega _ {p,q} x _ {p} x _ {q} ^ \prime \right | ^ {2} \leq \ \sum _ { p=1 } ^ \infty \frac{1}{p} \ | x _ {p} | ^ {2} \sum _ { q=1 } ^ \infty \frac{1}{q} \ | x _ {q} ^ \prime | ^ {2} , $$

where $ x _ {p} $ and $ x _ {q} ^ \prime $ are such that the series on the right-hand side converge. If in (4), for example, $ x _ {p} = t ^ {-p} $, $ x _ {q} ^ \prime = z ^ {-q} $, $ | t | > 1 $, $ | z | > 1 $, one obtains the chord-distortion theorem

$$ \left | \mathop{\rm ln} \ \frac{F (t) - F (z) }{t - z } \right | ^ {2} \leq \mathop{\rm ln} \ \frac{| t | ^ {2} }{| t | ^ {2} -1 } \ \mathop{\rm ln} \ \frac{| z | ^ {2} }{| z | ^ {2} - 1 } . $$

Area theorems, for example in the class $ \mathfrak M ( a _ {1} \dots a _ {n} ) $, give necessary and sufficient conditions for a system $ \{ {f _ {k} (z) } : {f _ {k} (0) = a _ {k} , z \in \Delta } \} _ {k=1} ^ {n} $ of meromorphic functions $ f _ {k} $ to belong to the class $ \mathfrak M ( a _ {1} \dots a _ {n} ) $( see [6], p. 179).

References

[1] T.H. Gronwall, "Some remarks on conformal representation" Ann. of Math. Ser. 2 , 16 (1914 - 1915) pp. 72–76
[2] H. Prawitz, "Ueber Mittelwerte analytischer Funktionen" Arkiv. Mat. Astron., Fysik , 20A : 6 (1927) pp. 1–12
[3] G.M. Goluzin, "On -valued functions" Math. Sb. , 8 : 2 (1940) pp. 277–284 (In Russian)
[4] N.A. Lebedev, I.M. Milin, "On the coefficients of certain classes of analytic functions" Mat. Sb. , 28 : 2 (1951) pp. 359–400 (In Russian)
[5] Z. Nehari, "Inequalities for the coefficients of univalent functions" Arch. Rational Mech. and Anal. , 34 : 4 (1969) pp. 301–330
[6] N.A. Lebedev, "The area principle in the theory of univalent functions" , Moscow (1975) (In Russian)
[7] I.M. Milin, "Univalent functions and orthonormal systems" , Transl. Math. Monogr. , 49 , Amer. Math. Soc. (1977) (Translated from Russian)
[8] Yu.E. Alenitsyn, "Area theorems for functions that are analytic in a finitely-connected domain" Izv. Akad. Nauk SSSR Ser. Mat. , 37 : 5 (1973) pp. 1132–1154 (In Russian)
[9] V.Ya. Gultyanskii, V.A. Shchepetov, "A general area theorem for a certain class of q-quasi-conformal mappings" Dokl. Akad. Nauk SSSR , 218 : 3 (1974) pp. 509–512 (In Russian)
[10] H. Grunsky, "Koeffizientenbedingungen für schlichtabbildender meromorphe Funktionen" Math. Z. , 45 : 1 (1939) pp. 29–61

Comments

The inequalities (3) and (4) are a form of the Grunsky inequalities.

References

[a1] P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 10
How to Cite This Entry:
Area principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Area_principle&oldid=45215
This article was adapted from an original article by N.A. Lebedev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article