Difference between revisions of "Adjoint semi-group of operators"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (\odot fixed) |
||
Line 38: | Line 38: | ||
$$ | $$ | ||
− | X ^ \ | + | X ^ \odot = \{ { x ^ {*} \in X ^ {*} } : { \textrm{ the orbit } } |
$$ | $$ | ||
Line 49: | Line 49: | ||
dense, $ \mathbf T ^ {*} $- | dense, $ \mathbf T ^ {*} $- | ||
invariant subspace of $ X ^ {*} $, | invariant subspace of $ X ^ {*} $, | ||
− | and the restriction $ \mathbf T ^ \ | + | and the restriction $ \mathbf T ^ \odot = \{ T ^ {*} ( t ) \mid _ {X ^ \odot } \} _ {t \geq 0 } $ |
is a $ C _ {0} $- | is a $ C _ {0} $- | ||
− | semi-group on $ X ^ \ | + | semi-group on $ X ^ \odot $, |
called the strongly continuous adjoint of $ \mathbf T $. | called the strongly continuous adjoint of $ \mathbf T $. | ||
− | Its infinitesimal generator $ A ^ \ | + | Its infinitesimal generator $ A ^ \odot $ |
is the part of $ A ^ {*} $ | is the part of $ A ^ {*} $ | ||
− | in $ X ^ \ | + | in $ X ^ \odot $, |
where $ A ^ {*} $ | where $ A ^ {*} $ | ||
is the adjoint of the infinitesimal generator $ A $ | is the adjoint of the infinitesimal generator $ A $ | ||
of $ \mathbf T $. | of $ \mathbf T $. | ||
− | Its spectrum satisfies $ \sigma ( A ^ \ | + | Its spectrum satisfies $ \sigma ( A ^ \odot ) = \sigma ( A ^ {*} ) = \sigma ( A ) $. |
If $ X $ | If $ X $ | ||
− | is reflexive (cf. [[Reflexive space|Reflexive space]]), then $ X ^ \ | + | is reflexive (cf. [[Reflexive space|Reflexive space]]), then $ X ^ \odot = X ^ {*} $[[#References|[a9]]]. |
− | Starting from $ \mathbf T ^ \ | + | Starting from $ \mathbf T ^ \odot $, |
− | one defines $ X ^ {\ | + | one defines $ X ^ {\odot * } = ( X ^ \odot ) ^ {*} $ |
− | and $ X ^ {\ | + | and $ X ^ {\odot \odot } = ( X ^ \odot ) ^ \odot $. |
− | The natural mapping $ j : X \rightarrow {X ^ {\ | + | The natural mapping $ j : X \rightarrow {X ^ {\odot * } } $, |
− | $ \langle {jx,x ^ \ | + | $ \langle {jx,x ^ \odot } \rangle = \langle {x ^ \odot , x } \rangle $, |
− | is an isomorphic imbedding with values in $ X ^ {\ | + | is an isomorphic imbedding with values in $ X ^ {\odot \odot } $, |
and $ X $ | and $ X $ | ||
− | is said to be $ \ | + | is said to be $ \odot $- |
reflexive with respect to $ \mathbf T $ | reflexive with respect to $ \mathbf T $ | ||
if $ j $ | if $ j $ | ||
maps $ X $ | maps $ X $ | ||
− | onto $ X ^ {\ | + | onto $ X ^ {\odot \odot } $. |
This is the case if and only if the resolvent $ ( \lambda - A ) ^ {- 1 } $ | This is the case if and only if the resolvent $ ( \lambda - A ) ^ {- 1 } $ | ||
is weakly compact for some (hence for all) $ \lambda \in \varrho ( A ) $[[#References|[a7]]]. If $ X $ | is weakly compact for some (hence for all) $ \lambda \in \varrho ( A ) $[[#References|[a7]]]. If $ X $ | ||
− | is $ \ | + | is $ \odot $- |
reflexive with respect to $ \mathbf T $ | reflexive with respect to $ \mathbf T $ | ||
− | and $ B \in {\mathcal L} ( X,X ^ {\ | + | and $ B \in {\mathcal L} ( X,X ^ {\odot * } ) $, |
− | then the part of $ A ^ {\ | + | then the part of $ A ^ {\odot * } + B $ |
in $ X $ | in $ X $ | ||
generates a $ C _ {0} $- | generates a $ C _ {0} $- | ||
semi-group on $ X $[[#References|[a1]]]. | semi-group on $ X $[[#References|[a1]]]. | ||
− | Let $ \pi : {X ^ {*} } \rightarrow {X ^ {*} /X ^ \ | + | Let $ \pi : {X ^ {*} } \rightarrow {X ^ {*} /X ^ \odot } $ |
be the quotient mapping. If, for some $ x ^ {*} \in X ^ {*} $, | be the quotient mapping. If, for some $ x ^ {*} \in X ^ {*} $, | ||
the mapping $ t \mapsto \pi T ^ {*} ( t ) x ^ {*} $ | the mapping $ t \mapsto \pi T ^ {*} ( t ) x ^ {*} $ | ||
− | is separably-valued, then $ T ^ {*} ( t ) x ^ {*} \in X ^ \ | + | is separably-valued, then $ T ^ {*} ( t ) x ^ {*} \in X ^ \odot $ |
for all $ t > 0 $. | for all $ t > 0 $. | ||
Hence, if $ \mathbf T $ | Hence, if $ \mathbf T $ | ||
extends to a $ C _ {0} $- | extends to a $ C _ {0} $- | ||
− | group, then $ X ^ {*} /X ^ \ | + | group, then $ X ^ {*} /X ^ \odot $ |
is either trivial or non-separable [[#References|[a4]]]. | is either trivial or non-separable [[#References|[a4]]]. | ||
Line 98: | Line 98: | ||
is a positive $ C _ {0} $- | is a positive $ C _ {0} $- | ||
semi-group on a [[Banach lattice|Banach lattice]] $ X $, | semi-group on a [[Banach lattice|Banach lattice]] $ X $, | ||
− | then $ X ^ \ | + | then $ X ^ \odot $ |
need not be a sublattice of $ X ^ {*} $[[#References|[a2]]]. If, however, $ X ^ {*} $ | need not be a sublattice of $ X ^ {*} $[[#References|[a2]]]. If, however, $ X ^ {*} $ | ||
− | has order-continuous norm, then $ X ^ \ | + | has order-continuous norm, then $ X ^ \odot $ |
is even a projection band in $ X ^ {*} $[[#References|[a8]]]. For a positive $ C _ {0} $- | is even a projection band in $ X ^ {*} $[[#References|[a8]]]. For a positive $ C _ {0} $- | ||
semi-group $ \mathbf T $ | semi-group $ \mathbf T $ | ||
Line 110: | Line 110: | ||
$$ | $$ | ||
− | for all $ x ^ {*} \in ( X ^ \ | + | for all $ x ^ {*} \in ( X ^ \odot ) ^ {d} $, |
− | the disjoint complement of $ X ^ \ | + | the disjoint complement of $ X ^ \odot $ |
in $ X ^ {*} $. | in $ X ^ {*} $. | ||
− | If $ ( X ^ \ | + | If $ ( X ^ \odot ) ^ {d} $ |
has a weak order unit, then for all $ x ^ {*} \in X ^ {*} $ | has a weak order unit, then for all $ x ^ {*} \in X ^ {*} $ | ||
and $ t > 0 $ | and $ t > 0 $ | ||
− | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \ | + | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odot ) ^ {dd } $, |
− | the band generated by $ X ^ \ | + | the band generated by $ X ^ \odot $ |
in $ X ^ {*} $[[#References|[a5]]]. If, for some $ x ^ {*} \in X ^ {*} $, | in $ X ^ {*} $[[#References|[a5]]]. If, for some $ x ^ {*} \in X ^ {*} $, | ||
the mapping $ t \mapsto T ^ {*} ( t ) x ^ {*} $ | the mapping $ t \mapsto T ^ {*} ( t ) x ^ {*} $ | ||
is weakly measurable, then, assuming the Martin axiom (cf. [[Suslin hypothesis|Suslin hypothesis]]), for all $ t > 0 $ | is weakly measurable, then, assuming the Martin axiom (cf. [[Suslin hypothesis|Suslin hypothesis]]), for all $ t > 0 $ | ||
− | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \ | + | one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odot ) ^ {dd } $[[#References|[a6]]]. |
A general reference is [[#References|[a3]]]. | A general reference is [[#References|[a3]]]. |
Latest revision as of 20:04, 4 April 2020
The semi-group on a dual Banach space $ X ^ {*} $
composed of the adjoint operators of a $ C _ {0} $-
semi-group on $ X $(
cf. also Semi-group of operators).
Let $ \mathbf T = \{ T ( t ) \} _ {t \geq 0 } $ be a $ C _ {0} $- semi-group on a Banach space $ X $, i.e. $ T ( t ) \in {\mathcal L} ( X ) $ for all $ t $ and
i) $ T ( 0 ) = I $, the identity operator on $ X $;
ii) $ T ( t + s ) = T ( t ) T ( s ) $ for all $ t,s \geq 0 $;
iii) the orbits $ t \mapsto T ( t ) x $ are strongly continuous (cf. Strongly-continuous semi-group) on $ [ 0, \infty ) $ for all $ x \in X $. On the dual space $ X ^ {*} $, the adjoint semi-group $ \mathbf T ^ {*} = \{ T ^ {*} ( t ) \} _ {t \geq 0 } $, with $ T ^ {*} ( t ) = ( T ( t ) ) ^ {*} $, satisfies i) and ii), but not necessarily iii). Therefore one defines
$$ X ^ \odot = \{ { x ^ {*} \in X ^ {*} } : { \textrm{ the orbit } } $$
$$ \ {} {t \mapsto T ^ {*} ( t ) x ^ {*} \textrm{ is strongly continuous on } [ 0, \infty ) } \} . $$
This is a norm-closed, weak $ * $- dense, $ \mathbf T ^ {*} $- invariant subspace of $ X ^ {*} $, and the restriction $ \mathbf T ^ \odot = \{ T ^ {*} ( t ) \mid _ {X ^ \odot } \} _ {t \geq 0 } $ is a $ C _ {0} $- semi-group on $ X ^ \odot $, called the strongly continuous adjoint of $ \mathbf T $. Its infinitesimal generator $ A ^ \odot $ is the part of $ A ^ {*} $ in $ X ^ \odot $, where $ A ^ {*} $ is the adjoint of the infinitesimal generator $ A $ of $ \mathbf T $. Its spectrum satisfies $ \sigma ( A ^ \odot ) = \sigma ( A ^ {*} ) = \sigma ( A ) $. If $ X $ is reflexive (cf. Reflexive space), then $ X ^ \odot = X ^ {*} $[a9].
Starting from $ \mathbf T ^ \odot $, one defines $ X ^ {\odot * } = ( X ^ \odot ) ^ {*} $ and $ X ^ {\odot \odot } = ( X ^ \odot ) ^ \odot $. The natural mapping $ j : X \rightarrow {X ^ {\odot * } } $, $ \langle {jx,x ^ \odot } \rangle = \langle {x ^ \odot , x } \rangle $, is an isomorphic imbedding with values in $ X ^ {\odot \odot } $, and $ X $ is said to be $ \odot $- reflexive with respect to $ \mathbf T $ if $ j $ maps $ X $ onto $ X ^ {\odot \odot } $. This is the case if and only if the resolvent $ ( \lambda - A ) ^ {- 1 } $ is weakly compact for some (hence for all) $ \lambda \in \varrho ( A ) $[a7]. If $ X $ is $ \odot $- reflexive with respect to $ \mathbf T $ and $ B \in {\mathcal L} ( X,X ^ {\odot * } ) $, then the part of $ A ^ {\odot * } + B $ in $ X $ generates a $ C _ {0} $- semi-group on $ X $[a1].
Let $ \pi : {X ^ {*} } \rightarrow {X ^ {*} /X ^ \odot } $ be the quotient mapping. If, for some $ x ^ {*} \in X ^ {*} $, the mapping $ t \mapsto \pi T ^ {*} ( t ) x ^ {*} $ is separably-valued, then $ T ^ {*} ( t ) x ^ {*} \in X ^ \odot $ for all $ t > 0 $. Hence, if $ \mathbf T $ extends to a $ C _ {0} $- group, then $ X ^ {*} /X ^ \odot $ is either trivial or non-separable [a4].
If $ \mathbf T $ is a positive $ C _ {0} $- semi-group on a Banach lattice $ X $, then $ X ^ \odot $ need not be a sublattice of $ X ^ {*} $[a2]. If, however, $ X ^ {*} $ has order-continuous norm, then $ X ^ \odot $ is even a projection band in $ X ^ {*} $[a8]. For a positive $ C _ {0} $- semi-group $ \mathbf T $ on an arbitrary Banach lattice $ X $ one has
$$ {\lim\limits \sup } _ {t \downarrow 0 } \left \| {T ^ {*} ( t ) x ^ {*} - x ^ {*} } \right \| \geq 2 \left \| {x ^ {*} } \right \| $$
for all $ x ^ {*} \in ( X ^ \odot ) ^ {d} $, the disjoint complement of $ X ^ \odot $ in $ X ^ {*} $. If $ ( X ^ \odot ) ^ {d} $ has a weak order unit, then for all $ x ^ {*} \in X ^ {*} $ and $ t > 0 $ one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odot ) ^ {dd } $, the band generated by $ X ^ \odot $ in $ X ^ {*} $[a5]. If, for some $ x ^ {*} \in X ^ {*} $, the mapping $ t \mapsto T ^ {*} ( t ) x ^ {*} $ is weakly measurable, then, assuming the Martin axiom (cf. Suslin hypothesis), for all $ t > 0 $ one has $ T ^ {*} ( t ) x ^ {*} \in ( X ^ \odot ) ^ {dd } $[a6].
A general reference is [a3].
References
[a1] | Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans, H.R. Thieme, "Perturbation theory for dual semigroups, Part I: The sun-reflexive case" Math. Ann. , 277 (1987) pp. 709–725 |
[a2] | A. Grabosch, R. Nagel, "Order structure of the semigroup dual: A counterexample" Indagationes Mathematicae , 92 (1989) pp. 199–201 |
[a3] | J.M.A.M. van Neerven, "The adjoint of a semigroup of linear operators" , Lecture Notes in Mathematics , 1529 , Springer (1992) |
[a4] | J.M.A.M. van Neerven, "A dichotomy theorem for the adjoint of a semigroup of operators" Proc. Amer. Math. Soc. , 119 (1993) pp. 765–774 |
[a5] | J.M.A.M. van Neerven, B. de Pagter, "The adjoint of a positive semigroup" Comp. Math. , 90 (1994) pp. 99–118 |
[a6] | J.M.A.M. van Neerven, B. de Pagter, A.R. Schep, "Weak measurability of the orbits of an adjoint semigroup" G. Ferreyra (ed.) G.R. Goldstein (ed.) F. Neubrander (ed.) , Evolution Equations , Lecture Notes in Pure and Appl. Math. , 168 , M. Dekker (1994) pp. 327–336 |
[a7] | B. de Pagter, "A characterization of sun-reflexivity" Math. Ann. , 283 (1989) pp. 511–518 |
[a8] | B. de Pagter, "A Wiener–Young type theorem for dual semigroups" Acta Appl. Math. 27 (1992) pp. 101–109 |
[a9] | R.S. Phillips, "The adjoint semi-group" Pacific J. Math. , 5 (1955) pp. 269–283 |
Adjoint semi-group of operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_semi-group_of_operators&oldid=45144