Difference between revisions of "Absolutely summing operator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a1100701.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/A110/A.1100070 Absolutely summing operator | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Linear operator|linear operator]] $ T $ | |
+ | acting from a [[Banach space|Banach space]] $ X $ | ||
+ | into a Banach space $ Y $ | ||
+ | is called absolutely $ p $- | ||
+ | summing ( $ 1 \leq p < \infty $) | ||
+ | if there is a constant $ c \geq 0 $ | ||
+ | such that | ||
− | + | $$ | |
+ | \left ( \sum _ {k =1 } ^ { n } \left \| {Tx _ {k} } \right \| ^ {p} \right ) ^ {1/p } \leq | ||
+ | $$ | ||
− | + | $$ | |
+ | \leq | ||
+ | c \sup \left \{ {\left ( \sum _ {k = 1 } ^ { n } \left | {\left \langle {x _ {k} ,a } \right \rangle } \right | ^ {p} \right ) ^ {1/p } } : {a \in X ^ \prime , \left \| a \right \| \leq 1 } \right \} | ||
+ | $$ | ||
− | + | whenever $ x _ {1} \dots x _ {n} \in X $ | |
+ | and $ n = 1,2, \dots $. | ||
+ | Here, $ \langle {x _ {k} ,a } \rangle $ | ||
+ | denotes the value of the [[Linear functional|linear functional]] $ a \in X ^ \prime $( | ||
+ | the Banach dual of $ X $, | ||
+ | cf. [[Adjoint space|Adjoint space]]) at the element $ x _ {k} \in X $. | ||
+ | The set of such operators, denoted by $ \Pi _ {p} ( X,Y ) $, | ||
+ | becomes a Banach space under the norm $ \pi _ {p} ( T ) = \inf c $, | ||
+ | and $ \Pi _ {p} = \cup _ {X,Y } \Pi _ {p} ( X,Y ) $ | ||
+ | is a Banach operator ideal. If $ 1 \leq p < q < \infty $, | ||
+ | then $ \Pi _ {p} \subset \Pi _ {q} $. | ||
− | + | The prototype of an absolutely $ p $- | |
+ | summing operator is the canonical mapping $ { { \mathop{\rm Id} } } : {C ( K ) } \rightarrow {L _ {p} ( K, \mu ) } $, | ||
+ | where $ \mu $ | ||
+ | is a [[Borel measure|Borel measure]] on a compact [[Hausdorff space|Hausdorff space]] $ K $. | ||
+ | In this case, $ \pi _ {p} ( { { \mathop{\rm Id} } } : {C ( K ) } \rightarrow {L _ {p} ( K, \mu ) } ) = \mu ( K ) ^ {1/p } $. | ||
+ | |||
+ | The famous Grothendieck theorem says that all operators from $ L _ {1} ( K, \mu ) $ | ||
+ | into any [[Hilbert space|Hilbert space]] are absolutely $ 1 $- | ||
+ | summing. | ||
+ | |||
+ | Absolutely $ p $- | ||
+ | summing operators are weakly compact but may fail to be compact (cf. also [[Compact operator|Compact operator]]). For a Hilbert space $ H $ | ||
+ | it turns out that $ \Pi _ {p} ( H,H ) $ | ||
+ | is just the set of Hilbert–Schmidt operators (cf. [[Hilbert–Schmidt operator|Hilbert–Schmidt operator]]). Nuclear operators (cf. [[Nuclear operator|Nuclear operator]]) are absolutely $ p $- | ||
+ | summing. Conversely, the product of $ 2n $ | ||
+ | absolutely $ p $- | ||
+ | summing operators is nuclear, hence compact, if $ 2n \geq p $. | ||
+ | This implies that the identity mapping of a Banach space $ X $ | ||
+ | is absolutely $ p $- | ||
+ | summing if and only if $ { \mathop{\rm dim} } ( X ) < \infty $( | ||
+ | the Dvoretzky–Rogers theorem). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel, H. Jarchow, A. Tonge, "Absolutely summing operators" , Cambridge Univ. Press (1995)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.J.O. Jameson, "Summing and nuclear norms in Banach space theory" , Cambridge Univ. Press (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Pietsch, "Operator ideals" , North-Holland (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Diestel, H. Jarchow, A. Tonge, "Absolutely summing operators" , Cambridge Univ. Press (1995)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.J.O. Jameson, "Summing and nuclear norms in Banach space theory" , Cambridge Univ. Press (1987)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Pietsch, "Operator ideals" , North-Holland (1980)</TD></TR></table> |
Latest revision as of 16:08, 1 April 2020
A linear operator $ T $
acting from a Banach space $ X $
into a Banach space $ Y $
is called absolutely $ p $-
summing ( $ 1 \leq p < \infty $)
if there is a constant $ c \geq 0 $
such that
$$ \left ( \sum _ {k =1 } ^ { n } \left \| {Tx _ {k} } \right \| ^ {p} \right ) ^ {1/p } \leq $$
$$ \leq c \sup \left \{ {\left ( \sum _ {k = 1 } ^ { n } \left | {\left \langle {x _ {k} ,a } \right \rangle } \right | ^ {p} \right ) ^ {1/p } } : {a \in X ^ \prime , \left \| a \right \| \leq 1 } \right \} $$
whenever $ x _ {1} \dots x _ {n} \in X $ and $ n = 1,2, \dots $. Here, $ \langle {x _ {k} ,a } \rangle $ denotes the value of the linear functional $ a \in X ^ \prime $( the Banach dual of $ X $, cf. Adjoint space) at the element $ x _ {k} \in X $. The set of such operators, denoted by $ \Pi _ {p} ( X,Y ) $, becomes a Banach space under the norm $ \pi _ {p} ( T ) = \inf c $, and $ \Pi _ {p} = \cup _ {X,Y } \Pi _ {p} ( X,Y ) $ is a Banach operator ideal. If $ 1 \leq p < q < \infty $, then $ \Pi _ {p} \subset \Pi _ {q} $.
The prototype of an absolutely $ p $- summing operator is the canonical mapping $ { { \mathop{\rm Id} } } : {C ( K ) } \rightarrow {L _ {p} ( K, \mu ) } $, where $ \mu $ is a Borel measure on a compact Hausdorff space $ K $. In this case, $ \pi _ {p} ( { { \mathop{\rm Id} } } : {C ( K ) } \rightarrow {L _ {p} ( K, \mu ) } ) = \mu ( K ) ^ {1/p } $.
The famous Grothendieck theorem says that all operators from $ L _ {1} ( K, \mu ) $ into any Hilbert space are absolutely $ 1 $- summing.
Absolutely $ p $- summing operators are weakly compact but may fail to be compact (cf. also Compact operator). For a Hilbert space $ H $ it turns out that $ \Pi _ {p} ( H,H ) $ is just the set of Hilbert–Schmidt operators (cf. Hilbert–Schmidt operator). Nuclear operators (cf. Nuclear operator) are absolutely $ p $- summing. Conversely, the product of $ 2n $ absolutely $ p $- summing operators is nuclear, hence compact, if $ 2n \geq p $. This implies that the identity mapping of a Banach space $ X $ is absolutely $ p $- summing if and only if $ { \mathop{\rm dim} } ( X ) < \infty $( the Dvoretzky–Rogers theorem).
References
[a1] | J. Diestel, H. Jarchow, A. Tonge, "Absolutely summing operators" , Cambridge Univ. Press (1995) |
[a2] | G.J.O. Jameson, "Summing and nuclear norms in Banach space theory" , Cambridge Univ. Press (1987) |
[a3] | A. Pietsch, "Operator ideals" , North-Holland (1980) |
Absolutely summing operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolutely_summing_operator&oldid=45003