Difference between revisions of "User:Ulf Rehmann/Table of automatically generated TeX code"
Ulf Rehmann (talk | contribs) (Corrections (Draft)) |
Ulf Rehmann (talk | contribs) m |
||
Line 67: | Line 67: | ||
!colspan="5" | [[Cartan subalgebra]] | !colspan="5" | [[Cartan subalgebra]] | ||
|- | |- | ||
− | | 14.(33.)*|| https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c0205509.png || $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ || $$\ | + | | 14.(33.)*|| https://www.encyclopediaofmath.org/legacyimages/c/c020/c020550/c0205509.png || $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ || $$\mathfrak { g }_0 = \big\{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists { n }_{X,H} \in {\mathbb Z} ( ( \text { ad } H ) ^ { n_{X , H} } ( X ) = 0 ) \big\}$$ || conf 0.110 F |
− | + | ||
png = c0205509.png(9) | png = c0205509.png(9) | ||
|- | |- |
Revision as of 21:46, 2 November 2019
Nr. | Image of png File | $\TeX$, 1st version | $\TeX$, 2nd version | Confidence, F?
name of png | |
---|---|---|---|---|---|
Algebraic curve | |||||
1.(23.) | $g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n } \end{array} \right.$ | $$ g \leq \left\{ \begin{array} { l l } { \frac { ( n - 2 ) ^ { 2 } } { 4 } } & { \text { for even } n, } \\ { \frac { ( n - 1 ) ( n - 3 ) } { 4 } } & { \text { for odd } n, } \end{array} \right.$$ | conf 0.698
png = a01145065.png(65) | ||
Algebraic geometry | |||||
2.(116.) | $\theta = \int _ { 0 } ^ { \lambda } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\empty$$ | conf 0.997
png = a01150014.png(14) | ||
3.(133.) | $\omega = 2 \int _ { 0 } ^ { 1 / c } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\empty$$ | conf 0.973
png = a01150021.png(21) | ||
4.(67.) | $\overline { w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } }$ | $$\widetilde{ w } = 2 \int _ { 0 } ^ { 1 / \varepsilon } \frac { d x } { \sqrt { ( 1 - c ^ { 2 } x ^ { 2 } ) ( 1 - e ^ { 2 } x ^ { 2 } ) } },$$ | conf 0.107
png = a01150022.png(22) | ||
5.(105.) | $\theta ( v + \pi i r ) = \theta ( r ) , \quad \theta ( v + \alpha _ { j } ) = e ^ { L _ { j } ( v ) } \theta ( v )$ | $$\empty$$ | conf 0.775
png = a01150044.png(44) | ||
6.(17.) | $\left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } 7 )$ | $$\empty$$ | conf 0.440
png = a01150078.png(78) | ||
Algebraic surface | |||||
7.(144.) | $0 \rightarrow O _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$ | $$0 \rightarrow {\cal O} _ { V } \rightarrow E _ { \alpha } \rightarrow T _ { V } \rightarrow 0$$ | conf 0.981
png = a011640132.png(132) | ||
8.(73.) | $M = \operatorname { dim } \operatorname { Im } ( H ^ { 1 } ( V , E _ { \alpha } ) \rightarrow H ^ { 1 } ( V , T _ { V } ) )$ | $$\empty$$ | conf 0.997
png = a011640137.png(137) | ||
9.(88.) | $\operatorname { dim } _ { k } H ^ { 2 } ( V , E _ { \alpha } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , T _ { V } )$ | $$\empty$$ | conf 0.996
png = a011640139.png(139) | ||
10.(117.) | $N _ { m } = \left( \begin{array} { c } { m + 3 } \\ { 3 } \end{array} \right) - d m + 2 t + \tau + p - 1$ | $$\empty$$ | conf 0.369
png = a01164027.png(27) | ||
11.(72.) | $p _ { \alpha } ( V ) = \left( \begin{array} { c } { n - 1 } \\ { 3 } \end{array} \right) - d ( n - 1 ) + 2 t + \tau + p - 1$ | $$\empty$$ | conf 0.396
png = a01164029.png(29) | ||
12.(68.)* | $p _ { x } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , O _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , O _ { V } ) =$ | $$p _ { \alpha } ( V ) = - \operatorname { dim } _ { k } H _ { 1 } ( V , {\cal O} _ { V } ) + \operatorname { dim } _ { k } H ^ { 2 } ( V , {\cal O} _ { V } ) =$$ | conf 0.756 F
png = a01164047.png(47) | ||
13.(93.)* | $1 + p _ { x } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 }$ | $$ 1 + p _ { \alpha } ( V ) = \frac { \operatorname { deg } ( c _ { 1 } ^ { 2 } ) + \operatorname { deg } ( c _ { 2 } ) } { 12 },$$ | conf 0.752 F
png = a01164053.png(53) | ||
Cartan subalgebra | |||||
14.(33.)* | $\mathfrak { g } 0 = \{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists \mathfrak { n } X , H \in Z ( ( \text { ad } H ) ^ { n } X , H ( X ) = 0 ) \}$ | $$\mathfrak { g }_0 = \big\{ X \in \mathfrak { g } : \forall H \in \mathfrak { t } \exists { n }_{X,H} \in {\mathbb Z} ( ( \text { ad } H ) ^ { n_{X , H} } ( X ) = 0 ) \big\}$$ | conf 0.110 F
png = c0205509.png(9) | ||
Cartan theorem | |||||
15.(49.)* | $f _ { j } ] = \delta _ { i j } h _ { i } , \quad [ h _ { i } , e _ { j } ] = \alpha _ { i j } e _ { j } , \quad [ h _ { i } , f _ { j } ] = - \alpha _ { j } f _ { j }$ | $$\empty$$ | conf 0.149 F
png = c0205704.png(4) | ||
16.(55.)* | $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ | $$\empty$$ | conf 0.853 F
png = c02057064.png(64) | ||
Comitant | |||||
17.(7.) | $H = \frac { 1 } { 36 } \left| \begin{array} { c c } { \frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } } & { \frac { \partial ^ { 2 } f } { \partial x \partial y } } \\ { \frac { \partial ^ { 2 } f } { \partial x \partial y } } & { \frac { \partial ^ { 2 } f } { \partial y ^ { 2 } } } \end{array} \right| =$ | $$\empty$$ | conf 0.956
png = c02333033.png(33) | ||
18.(76.) | $= ( a _ { 0 } a _ { 2 } - a _ { 1 } ^ { 2 } ) x ^ { 2 } + ( a _ { 0 } a _ { 3 } - a _ { 1 } a _ { 2 } ) x y + ( a _ { 1 } a _ { 3 } - a _ { 2 } ^ { 2 } ) y ^ { 2 }$ | $$\empty$$ | conf 0.549
png = c02333034.png(34) | ||
19.(11.)* | $( \alpha _ { 0 } , \alpha _ { 1 } , \alpha _ { 2 } , \alpha _ { 3 } ) \mapsto ( \alpha _ { 0 } \alpha _ { 2 } - \alpha _ { 1 } ^ { 2 } , \frac { 1 } { 2 } ( \alpha _ { 0 } \alpha _ { 3 } - \alpha _ { 1 } \alpha _ { 2 } ) , \alpha _ { 1 } \alpha _ { 3 } - \alpha _ { 2 } ^ { 2 } )$ | $$\empty$$ | conf 0.521 F
png = c02333035.png(35) | ||
Deformation | |||||
20.(26.) | $\operatorname { Aut } _ { R ^ { \prime } } ( X ^ { \prime } | X _ { 0 } ) \rightarrow \operatorname { Aut } _ { R } ( X _ { R ^ { \prime } } ^ { \prime } \otimes R | X _ { 0 } )$ | $$\empty$$ | conf 0.683
png = d030700175.png(175) | ||
21.(27.) | $\operatorname { dim } _ { k } H ^ { 1 } ( X _ { 0 } , T _ { X _ { 0 } } ) - \operatorname { dim } M _ { X _ { 0 } } \leq \operatorname { dim } _ { k } H ^ { 2 } ( X _ { 0 } , T _ { X _ { 0 } } )$ | $$\empty$$ | conf 0.944
png = d030700190.png(190) | ||
22.(78.)* | $\alpha \circ b = \alpha b + \sum _ { i = 1 } ^ { \infty } \phi _ { i } ( \alpha , b ) t ^ { i } , \quad \alpha , b \in V$ | $$\empty$$ | conf 0.097 F
png = d030700263.png(263) | ||
23.(96.)* | $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ | $$\empty$$ | conf 0.873 F
png = d030700270.png(270) | ||
Differential algebra | |||||
24.(106.) | $S ^ { t } F = \sum _ { j = 1 } ^ { r } c _ { j } A ^ { p _ { j } } A _ { 1 } ^ { i _ { 1 j } } \dots A _ { m - l } ^ { i _ { m - l } , j }$ | $$\empty$$ | conf 0.149
png = d031830107.png(107) | ||
25.(146.)* | $( \eta _ { 1 } , \ldots , \eta _ { k } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { k } )$ | $$\empty$$ | conf 0.562 F
png = d031830141.png(141) | ||
26.(145.)$^F$* | $( \eta _ { 1 } , \ldots , \eta _ { n } ) \rightarrow F ( \zeta _ { 1 } , \ldots , \zeta _ { n } )$ | $$\empty$$ | conf 0.376 F
png = d031830150.png(150) | ||
27.(57.) | $\omega _ { V } = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$\empty$$ | conf 0.780
png = d03183016.png(16) | ||
28.(111.) | $e _ { i j } = \operatorname { ord } _ { Y } _ { j } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$ | $$ e_ { i j } = \operatorname { ord } _ { { Y } _ { j } } F _ { i } , \quad 1 \leq i \leq n , \quad i \leq j \leq n$$ | conf 0.187
png = d03183043.png(43) | ||
Dimension polynomial | |||||
29.(48.) | $\omega _ { \eta / F } ( x ) = \sum _ { 0 \leq i \leq m } \alpha _ { i } \left( \begin{array} { c } { x + i } \\ { i } \end{array} \right)$ | $$\empty$$ | conf 0.968
png = d03249029.png(29) | ||
Duality | |||||
30.(118.)* | $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow C$ | $$\empty$$ | conf 0.824 F
png = d034120173.png(173) | ||
31.(59.)* | $H ^ { p } ( X , F ) \times H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) ) \rightarrow H _ { c } ^ { n } ( X , \Omega )$ | $$\empty$$ | conf 0.921 F
png = d034120175.png(175) | ||
32.(124.)* | $( H ^ { p } ( X , F ) ) ^ { \prime } \cong H _ { c } ^ { n - p } ( X , \operatorname { Hom } ( F , \Omega ) )$ | $$\empty$$ | conf 0.829 F
png = d034120184.png(184) | ||
33.(29.)* | $\beta : \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X F , \Omega ) \rightarrow \operatorname { Ext } _ { c } ^ { n - p - 1 } ( X \backslash Y || F , \Omega )$ | $$\empty$$ | conf 0.634 | F
png = d034120236.png(236) | |
34.(77.)* | $\underset { n \rightarrow \infty } { \operatorname { lim } } | \alpha _ { n } | ^ { 1 / n } = \sigma < + \infty$ | $$\empty$$ | conf 0.521 F
png = d034120247.png(247) | ||
35.(58.)* | $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ | $$\empty$$ | conf 0.861 F
png = d034120253.png(253) | ||
36.(69.)* | $\operatorname { sup } _ { l \in E ^ { \perp } } | l ( \omega ) | = \operatorname { inf } _ { x \in E } \| \omega - x \|$ | $$\empty$$ | conf 0.293 F
png = d034120360.png(360) | ||
37.(15.) | $\operatorname { sup } _ { f \in B ^ { 1 } } | \int _ { \partial G } f ( \zeta ) \omega ( \zeta ) d \zeta | = \operatorname { inf } _ { \phi \in E ^ { 1 } } \int _ { \partial G } | \omega ( \zeta ) - \phi ( \zeta ) \| d \zeta |$ | $$\empty$$ | conf 0.508
png = d034120376.png(376) | ||
38.(52.) | $f = \{ f _ { \alpha } \} \in \prod _ { \alpha } F _ { \alpha } , \quad g = \{ g _ { \alpha } \} \in \oplus _ { \alpha } G _ { \alpha }$ | $$\empty$$ | conf 0.491
png = d034120509.png(509) | ||
39.(140.) | $f ^ { * } ( x ^ { * } ) = \operatorname { sup } _ { x \in X } ( \langle x ^ { * } , x \rangle - f ( x ) )$ | $$\empty$$ | conf 0.900
png = d034120535.png(535) | ||
40.(94.) | $f _ { 0 } ( x ) \rightarrow \text { inf, } \quad f _ { i } ( x ) \leq 0 , \quad i = 1 , \ldots , m , \quad x \in B$ | $$\empty$$ | conf 0.810
png = d034120555.png(555) | ||
41.(74.)* | $( c _ { \gamma } , c ^ { r } ) = \sum _ { t ^ { r } \in K } c _ { r } ( t ^ { \prime } ) c ^ { r } ( t ^ { r } ) \operatorname { mod } 1$ | $$\empty$$ | conf 0.117 F
png = d03412079.png(79) | ||
Extension of a differential field | |||||
42.(63.) | $F _ { 1 } F _ { 2 } = F _ { 1 } \langle F _ { 2 } \rangle = F _ { 1 } ( F _ { 2 } ) = F _ { 2 } ( F _ { 1 } ) = F _ { 2 } \langle F _ { 1 } \rangle$ | $$\empty$$ | conf 0.628
png = e03696024.png(24) | ||
Formal group | |||||
43.(120.)* | $\operatorname { og } F _ { MU } ( X ) = \sum _ { i = 1 } ^ { \infty } i ^ { - 1 } [ C ^ { - } P ^ { - 1 } ] X ^ { i }$ | $$\empty$$ | conf 0.098 F
png = f040820118.png(118) | ||
44.(147.)* | $( x _ { 1 } , \ldots , x _ { x } ) \circ ( y _ { 1 } , \ldots , y _ { n } ) = ( z _ { 1 } , \ldots , z _ { x } )$ | $$\empty$$ | conf 0.553 F
png = f04082059.png(59) | ||
Gel'fond-Schneider method | |||||
45.(148.) | $\alpha ^ { \beta } = \operatorname { exp } \{ \beta \operatorname { log } \alpha \}$ | $$\empty$$ | conf 0.979
png = g1300205.png(5) | ||
Group | |||||
46.(22.)* | $\left. \begin{array} { l l l } { A } & { \rightarrow Y } & { \square } \\ { \downarrow } & { \square } & { } & { \square } \\ { X } & { \square } & { } & { A } \end{array} \right.$ | $$\empty$$ | conf 0.226 F
png = g04521075.png(75) | ||
Homogeneous space | |||||
47.(89.) | $\mathfrak { g } = \mathfrak { f } + \mathfrak { m } , \quad \mathfrak { f } \cap \mathfrak { m } = \{ 0 \}$ | $$\empty$$ | conf 0.793
png = h04769069.png(69) | ||
Hopf algebra | |||||
48.(103.) | $m \circ ( \iota \otimes 1 ) \circ \mu = m \circ ( 1 \otimes \iota ) \circ \mu = e \circ \epsilon$ | $$\empty$$ | conf 0.618
png = h047970129.png(129) | ||
49.(107.)* | $F _ { 1 } ( X || Y ) , \ldots , F _ { n } ( X || Y ) \in K [ X _ { 1 } , \ldots , X _ { n } || Y _ { 1 } , \ldots , Y _ { n } ] \}$ | $$\empty$$ | conf 0.353 F
png = h047970139.png(139) | ||
50.(97.) | $\epsilon ( x ) = 0 , \quad \delta ( x ) = x \bigotimes 1 + 1 \bigotimes x , \quad x \in \mathfrak { g }$ | $$\empty$$ | conf 0.213
png = h04797042.png(42) | ||
Invariants, theory of | |||||
51.(149.)* | $\alpha _ { 1 } , \ldots , i _ { R } \rightarrow \alpha _ { 2 } ^ { \prime } , \ldots , i _ { R }$ | $$\empty$$ | conf 0.142 F
png = i05235015.png(15) | ||
Jordan algebra | |||||
52.(150.) | $H ( C _ { 3 } , \Gamma ) = \{ X \in C _ { 3 } : X = \Gamma ^ { - 1 } X \square ^ { \prime } \Gamma \}$ | $$\empty$$ | conf 0.651
png = j05427030.png(30) | ||
53.(42.) | $\Gamma = \operatorname { diag } \{ \gamma _ { 1 } , \gamma _ { 2 } , \gamma _ { 3 } \} , \quad \gamma _ { i } \neq 0 , \quad \gamma _ { i } \in F$ | $$\empty$$ | conf 0.987
png = j05427031.png(31) | ||
54.(125.)* | $\mathfrak { g } = \mathfrak { g } - 1 + \mathfrak { g } \mathfrak { d } + \mathfrak { g } _ { 1 }$ | $$\empty$$ | conf 0.598 F
png = j05427077.png(77) | ||
Jordan matrix | |||||
55.(6.)* | $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ | $$J = \left\| \begin{array} { c c c c } J_{n_1}(\lambda_1) & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & J_{n_s}(\lambda_s) \end{array} \right\|,$$ | conf 0.072 F
png = j0543403.png(3) | ||
56.(64.) | $C _ { m } ( \lambda ) = \operatorname { rk } ( A - \lambda E ) ^ { m - 1 } - 2 \operatorname { rk } ( A - \lambda E ) ^ { m } +$ | $$\empty$$ | conf 0.955
png = j05434030.png(30) | ||
57.(1.)* | $J _ { m } ( \lambda ) = \| \begin{array} { c c c c c c } { \lambda } & { 1 } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \lambda } & { 1 } & { \square } & { 0 } & { \square } \\ { \square } & { \square } & { \cdots } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \cdots } & { \square } & { \square } \\ { \square } & { 0 } & { \square } & { \square } & { \lambda } & { 1 } \\ { \square } & { \square } & { \square } & { \square } & { \square } & { \lambda } \end{array} ]$ | $$J_m(\lambda) = \left\| \begin{array} { c c c c c c } \lambda & 1 & \square & \square & \square & \square \\ \square & \lambda & 1 & \square & 0 & \square \\ \square & \square & \ddots & \ddots & \square & \square\\ \square & \square & \square & \ddots & \ddots & \square \\ \square & 0 & \square & \square & \lambda & 1 \\ \square & \square & \square & \square & \square & \lambda \end{array} \right\|,$$ | conf 0.098 F
png = j0543406.png(6) | ||
Lie algebra, semi-simple | |||||
58.(5.) | $\left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|$ | $$B_n: \quad \left\| \begin{array} { r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 0 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 2 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.232
png = l058510127.png(127) | ||
59.(3.)* | $\| \left. \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right. |$ | $$D_n: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { - 1 } & { 0 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 1 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 }\\ { 0 } & { - 1 } & { 2 } & { \dots } & { 0 } & { 0 } & { 0 } & { 0 } \\ \cdot & \cdot & \cdot & \dots & \cdot & \cdot &\cdot & \cdot \\ { 0 } & { 0 } & { 0 } & { \dots } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { - 1 } & { 2 } & { - 1 } & { - 1 }\\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 2 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { \dots } & { 0 } & { - 1 } & { 0 } & { 2 } \end{array} \right\|,$$ | conf 0.055 F
png = l058510129.png(129) | ||
60.(8.)* | $\left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_6: \quad \left\| \begin{array} { r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.628 F
png = l058510130.png(130) | ||
61.(4.) | $\left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|$ | $$E_7: \quad \left\| \begin{array} { r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.278
png = l058510131.png(131) | ||
62.(2.)* | $\left. \begin{array} { r l l l l l l l } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right.$ | $$E_8: \quad \left\| \begin{array} { r r r r r r r r } { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 2 } & { 0 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ {-1 } & { 0 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\|,$$ | conf 0.354 F
png = l058510132.png(132) | ||
63.(10.)* | $\left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|$ | $$F_4: \quad \left\| \begin{array} { r r r r } { 2 } & { - 1 } & { 0 } & { 0 } \\ { - 1 } & { 2 } & { - 2 } & { 0 } \\ { 0 } & { - 1 } & { 2 } & { - 1 } \\ { 0 } & { 0 } & { - 1 } & { 2 } \end{array} \right\| , \quad G _ { 2 } : \quad \left\| \begin{array} { r r } { 2 } & { - 1 } \\ { - 3 } & { 2 } \end{array} \right\|.$$ | conf 0.374 F
png = l058510133.png(133) | ||
64.(98.) | $\mathfrak { g } _ { \alpha } = \{ X \in \mathfrak { g } : [ H , X ] = \alpha ( H ) X , H \in \mathfrak { h } \}$ | $$\empty$$ | conf 0.976
png = l05851030.png(30) | ||
65.(126.) | $\mathfrak { g } = \mathfrak { h } + \sum _ { \alpha \in \Sigma } \mathfrak { g } _ { \alpha }$ | $$\empty$$ | conf 0.945
png = l05851037.png(37) | ||
66.(61.)* | $\mathfrak { g } _ { \alpha } = \operatorname { dim } [ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { - \alpha } ] = 1$ | $$\empty$$ | conf 0.520 F
png = l05851044.png(44) | ||
67.(65.)* | $[ H _ { \alpha } , X _ { \alpha } ] = 2 X _ { \alpha } \quad \text { and } \quad [ H _ { \alpha } , Y _ { \alpha } ] = - 2 Y _ { 0 }$ | $$\empty$$ | conf 0.539 F
png = l05851050.png(50) | ||
68.(70.) | $\beta ( H _ { \alpha } ) = \frac { 2 ( \alpha , \beta ) } { ( \alpha , \alpha ) } , \quad \alpha , \beta \in \Sigma$ | $$\empty$$ | conf 0.997
png = l05851051.png(51) | ||
69.(112.) | $[ \mathfrak { g } _ { \alpha } , \mathfrak { g } _ { \beta } ] = \mathfrak { g } _ { \alpha + \beta }$ | $$\empty$$ | conf 0.917
png = l05851057.png(57) | ||
70.(127.) | $H _ { \alpha _ { 1 } } , \ldots , H _ { \alpha _ { k } } , X _ { \alpha } \quad ( \alpha \in \Sigma )$ | $$\empty$$ | conf 0.432
png = l05851064.png(64) | ||
71.(113.)* | $[ [ X _ { \alpha _ { i } } , X _ { - } \alpha _ { i } ] , X _ { - \alpha _ { j } } ] = - n ( i , j ) X _ { \alpha _ { j } }$ | $$\empty$$ | conf 0.628 F
png = l05851069.png(69) | ||
72.(79.) | $n ( i , j ) = \alpha _ { j } ( H _ { i } ) = \frac { 2 ( \alpha _ { i } , \alpha _ { j } ) } { ( \alpha _ { j } , \alpha _ { j } ) }$ | $$\empty$$ | conf 0.992
png = l05851073.png(73) | ||
73.(13.) | $[ X _ { \alpha } , X _ { \beta } ] = \left\{ \begin{array} { l l } { N _ { \alpha , \beta } X _ { \alpha + \beta } } & { \text { if } \alpha + \beta \in \Sigma } \\ { 0 } & { \text { if } \alpha + \beta \notin \Sigma } \end{array} \right.$ | $$\empty$$ | conf 0.988
png = l05851074.png(74) | ||
74.(80.) | $N _ { \alpha , \beta } = - N _ { - \alpha , - \beta } \quad \text { and } \quad N _ { \alpha , \beta } = \pm ( p + 1 )$ | $$\empty$$ | conf 0.961
png = l05851078.png(78) | ||
75.(85.)* | $X _ { \alpha } - X _ { - \alpha } , \quad i ( X _ { \alpha } + X _ { - \alpha } ) \quad ( \alpha \in \Sigma _ { + } )$ | $$\empty$$ | conf 0.691 F
png = l05851085.png(85) | ||
Lie algebra, solvable | |||||
76.(119.)* | $[ \mathfrak { g } _ { i } , \mathfrak { g } _ { i } ] \subset \mathfrak { g } _ { \mathfrak { i } } + 1$ | $$\empty$$ | conf 0.276 F
png = l05852011.png(11) | ||
77.(141.) | $\operatorname { dim } \mathfrak { g } _ { i } = \operatorname { dim } \mathfrak { g } - i$ | $$\empty$$ | conf 0.901
png = l05852046.png(46) | ||
Lie group | |||||
78.(62.)* | $( G ) \cong \operatorname { Aut } ( L ( G ) ) \quad \text { and } \quad L ( \operatorname { Aut } ( G ) ) \cong D ( L ( G ) )$ | $$\empty$$ | conf 0.693 F
png = l058590115.png(115) | ||
79.(50.) | $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ | $$\empty$$ | conf 0.856
png = l05859086.png(86) | ||
Lie group, compact | |||||
80.(121.)* | $J = \left\| \begin{array} { c c } { 0 } & { E _ { x } } \\ { - E _ { x } } & { 0 } \end{array} \right\|$ | $$\empty$$ | conf 0.364 F
png = l05861012.png(12) | ||
Lie group, nilpotent | |||||
81.(83.) | $N ( F ) = \{ g \in GL ( V ) : g v \equiv v \operatorname { mod } V _ { i } \text { for all } v \in V _ { i } , i \geq 1 \}$ | $$\empty$$ | conf 0.466
png = l0586604.png(4) | ||
Lie group, semi-simple | |||||
82.(35.)* | $L ( \mathfrak { g } ) \cong \Gamma _ { 0 } ( \mathfrak { u } ) \cap \mathfrak { h } ^ { \prime } / \Gamma _ { 0 } ( [ \mathfrak { k } , \mathfrak { k } ] )$ | $$\empty$$ | conf 0.659 F
png = l058680102.png(102) | ||
83.(81.)* | $\Gamma _ { 1 } = \Gamma _ { 1 } ( g ) = \{ X \in h : \alpha ( X ) \in 2 \pi i Z \text { for all } \alpha \in \Sigma \}$ | $$\empty$$ | conf 0.183 F
png = l05868032.png(32) | ||
Lie p-algebra | |||||
84.(36.) | $( \operatorname { ad } x ) ^ { n } y = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j } \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { n - j } y x ^ { j }$ | $$\empty$$ | conf 0.356
png = l05872026.png(26) | ||
85.(99.) | $\pi ( x + y ) = \pi ( x ) + \pi ( y ) , \quad \pi ( \lambda x ) = \lambda ^ { p } \pi ( x ) , \quad \lambda \in k$ | $$\empty$$ | conf 0.964
png = l05872078.png(78) | ||
Lie theorem | |||||
86.(134.) | $y _ { i } = f _ { i } ( g _ { 1 } , \ldots , g _ { i } || x _ { 1 } , \ldots , x _ { n } ) , \quad i = 1 , \ldots , n$ | $$\empty$$ | conf 0.276
png = l05876010.png(10) | ||
87.(86.) | $X _ { i } = \sum _ { j = 1 } ^ { n } \xi _ { i j } ( x ) \frac { \partial } { \partial x _ { j } } , \quad i = 1 , \ldots , r$ | $$\empty$$ | conf 0.656
png = l05876016.png(16) | ||
88.(66.)* | $\frac { \partial f _ { j } } { \partial g _ { i } } ( g , x ) = \sum _ { k = 1 } ^ { r } \xi _ { k j } ( f ( g _ { s } x ) ) \psi _ { k i } ( g )$ | $$\empty$$ | conf 0.336 F
png = l05876030.png(30) | ||
89.(19.)* | $\sum _ { k = 1 } ^ { N } ( \xi _ { i k } \frac { \partial \xi _ { j l } } { \partial x _ { k } } - \xi _ { j k } \frac { \partial \xi _ { i l } } { \partial x _ { k } } ) = \sum _ { k = 1 } ^ { r } c _ { i j } ^ { k } \xi _ { k l }$ | $$\empty$$ | conf 0.157 F
png = l05876037.png(37) | ||
90.(14.) | $\left. \begin{array} { c } { c _ { i j } ^ { k } = - c _ { j i } ^ { k } } \\ { \sum _ { l = 1 } ^ { r } ( c _ { i l } ^ { m } c _ { j k } ^ { l } + c _ { k l } ^ { m } c _ { i j } ^ { l } + c _ { j l } ^ { m } c _ { k i } ^ { l } ) = 0 , \quad 1 \leq i , j , k , l , m \leq r } \end{array} \right.$ | $$\empty$$ | conf 0.085
png = l05876052.png(52) | ||
Maximal torus | |||||
91.(95.) | $F ( x _ { 1 } f _ { 1 } + \ldots + x _ { x } f _ { n } ) = x _ { 1 } x _ { n } + x _ { 2 } x _ { n } - 1 + \ldots + x _ { p } x _ { n } - p + 1$ | $$\empty$$ | conf 0.198
png = m06301072.png(72) | ||
Non-Abelian cohomology | |||||
92.(114.)* | $\phi ( g _ { 1 } ) \phi ( g ) \phi ( g _ { 1 } g _ { 2 } ) ^ { - 1 } = \operatorname { Int } m ( g _ { 1 } , g _ { 2 } )$ | $$\empty$$ | conf 0.443 F
png = n066900110.png(110) | ||
93.(90.)* | $( g _ { 1 } , g _ { 2 } ) = h ( g _ { 1 } ) ( \phi ( g _ { 1 } ) ( h ( g _ { 2 } ) ) ) m ( g _ { 1 } , g _ { 2 } ) h ( g _ { 1 } , g _ { 2 } ) ^ { - 1 }$ | $$\empty$$ | conf 0.764 F
png = n066900118.png(118) | ||
94.(44.) | $\delta ( e ) = e \quad \text { and } \quad \delta ( \rho ( a ) b ) = \sigma ( a ) \delta ( b ) , \quad \alpha \in C ^ { 0 } , \quad b \in C ^ { 1 }$ | $$\empty$$ | conf 0.400
png = n06690016.png(16) | ||
95.(60.)* | $C ^ { * } ( \mathfrak { U } , F ) = ( C ^ { 0 } ( \mathfrak { U } , F ) , C ^ { 1 } ( \mathfrak { U } , F ) , C ^ { 2 } ( \mathfrak { U } , F ) )$ | $$\empty$$ | conf 0.205 F
png = n06690028.png(28) | ||
Picard scheme | |||||
96.(39.)* | $\operatorname { Pic } _ { X / k } ( S ^ { \prime } ) = \operatorname { Fic } ( X \times k S ^ { \prime } ) / \operatorname { Fic } ( S ^ { \prime } )$ | $$\empty$$ | conf 0.345 F +
png = p07267025.png(25) | ||
Principal analytic fibration | |||||
97.(100.)* | $g j : U _ { i } \cap U _ { j } \rightarrow G , \quad i , j \in I , \quad U _ { i } \cap U _ { j } \neq \emptyset$ | $$\empty$$ | conf 0.184 F
png = p07464025.png(25) | ||
Quantum groups | |||||
98.(101.) | $\phi ^ { * } : \mathfrak { g } ^ { * } \otimes \mathfrak { g } ^ { * } \rightarrow \mathfrak { g } ^ { * }$ | $$\empty$$ | conf 0.837
png = q07631062.png(62) | ||
99.(108.) | $\delta : U _ { \mathfrak { g } } \rightarrow U _ { \mathfrak { g } } \otimes U _ { \mathfrak { g } }$ | $$\empty$$ | conf 0.648
png = q07631071.png(71) | ||
100.(56.)* | $\delta ( \alpha ) = \operatorname { lim } _ { h \rightarrow 0 } h ^ { - 1 } ( \Delta ( a ) - \Delta ^ { \prime } ( \alpha ) )$ | $$\empty$$ | conf 0.304 F
png = q07631072.png(72) | ||
101.(129.)* | $[ \alpha , X _ { i } ^ { \pm } ] = \pm \alpha _ { i } ( \alpha ) X _ { i } ^ { \pm } \quad \text { for } a$ | $$\empty$$ | conf 0.544 F
png = q07631088.png(88) | ||
102.(128.) | $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ | $$\empty$$ | conf 0.893
png = q07631089.png(89) | ||
103.(20.) | $\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) q ^ { - k ( n - k ) / 2 } ( X _ { i } ^ { \pm } ) ^ { k } X _ { j } ^ { \pm } \cdot ( X _ { i } ^ { \pm } ) ^ { n - k } = 0$ | $$\empty$$ | conf 0.055
png = q07631092.png(92) | ||
104.(30.) | $\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$ | $$\empty$$ | conf 0.443
png = q07631095.png(95) | ||
105.(21.)* | $\Delta ( X _ { i } ^ { \pm } ) = X _ { i } ^ { \pm } \bigotimes \operatorname { exp } ( \frac { h H _ { i } } { 4 } ) + \operatorname { exp } ( \frac { - h H _ { i } } { 4 } ) \otimes x _ { i } ^ { \pm }$ | $$\empty$$ | conf 0.212 F
png = q07631099.png(99) | ||
Rational representation | |||||
106.(91.) | $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ | $$\empty$$ | conf 0.879
png = r077630100.png(100) | ||
107.(135.) | $\phi _ { 0 } \bigotimes \phi _ { 1 } ^ { Fr } \otimes \ldots \otimes \phi _ { d } ^ { FF ^ { d } }$ | $$\empty$$ | conf 0.136
png = r077630104.png(104) | ||
108.(45.)* | $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ | $$\empty$$ | conf 0.862 F
png = r07763055.png(55) | ||
Singular point | |||||
109.(31.) | $\sum _ { k _ { 1 } , \ldots , k _ { n } = 0 } ^ { \infty } c _ { k _ { 1 } \cdots k _ { n } } ( z _ { 1 } - \zeta _ { 1 } ) ^ { k _ { 1 } } \ldots ( z _ { n } - \zeta _ { n } ) ^ { k _ { n } }$ | $$\empty$$ | conf 0.324
png = s085590225.png(225) | ||
110.(46.) | $\frac { m _ { 1 } } { n _ { 1 } } < \frac { m _ { 2 } } { n _ { 1 } n _ { 2 } } < \ldots < \frac { m _ { g } } { n _ { 1 } \ldots n _ { g } } = \frac { m _ { g } } { n }$ | $$\empty$$ | conf 0.459
png = s085590404.png(404) | ||
111.(115.)* | $p ( Z ) = 1 - \operatorname { dim } H ^ { 0 } ( Z , O _ { Z } ) + \operatorname { dim } H ^ { 1 } ( Z , O _ { Z } )$ | $$\empty$$ | conf 0.997 F
png = s085590429.png(429) | ||
112.(136.)* | $X _ { \epsilon } = \{ ( x _ { 0 } , \ldots , x _ { x } ) : f ( x _ { 0 } , \ldots , x _ { x } ) = \epsilon \}$ | $$\empty$$ | conf 0.433 F
png = s085590440.png(440) | ||
113.(12.) | $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ | $$\empty$$ | conf 0.870
png = s085590458.png(458) | ||
114.(75.) | $( \frac { \partial F ( x , y , \lambda ) } { \partial x } , \frac { \partial F ( x , y , \lambda ) } { \partial y } )$ | $$\empty$$ | conf 0.986
png = s085590482.png(482) | ||
115.(137.) | $\frac { d x _ { i } } { d x _ { i _ { 0 } } } = f _ { i } ( x ) , \quad f _ { i } \in C ( U ) , \quad i \neq i _ { 0 }$ | $$\empty$$ | conf 0.594
png = s085590515.png(515) | ||
116.(142.)* | $A = \| \left. \begin{array} { l l } { \alpha } & { b } \\ { c } & { e } \end{array} \right. |$ | $$\empty$$ | conf 0.506 F
png = s085590527.png(527) | ||
117.(53.) | $\Delta = ( F _ { x x } ^ { \prime \prime } ) _ { 0 } ( F _ { y y } ^ { \prime \prime } ) _ { 0 } - ( F _ { x y } ^ { \prime \prime } ) _ { 0 } ^ { 2 }$ | $$\empty$$ | conf 0.920
png = s085590634.png(634) | ||
118.(16.)* | $\left| \begin{array} { l l l } { F _ { X } ^ { \prime } } & { F _ { y } ^ { \prime } } & { F _ { z } ^ { \prime } } \\ { G _ { \chi } ^ { \prime } } & { G _ { y } ^ { \prime } } & { G _ { Z } ^ { \prime } } \end{array} \right|$ | $$\empty$$ | conf 0.230 F
png = s085590645.png(645) | ||
119.(92.) | $( F _ { X } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { y } ^ { \prime } ) _ { 0 } = 0 , \quad ( F _ { z } ^ { \prime } ) _ { 0 } = 0$ | $$\empty$$ | conf 0.300
png = s085590653.png(653) | ||
Solv manifold | |||||
120.(138.) | $\{ e \} \rightarrow \Delta \rightarrow \pi \rightarrow Z ^ { s } \rightarrow \{ e \}$ | $$\empty$$ | conf 0.972
png = s08610054.png(54) | ||
Stability theorems in algebraic K-theory | |||||
121.(71.) | $\psi _ { t _ { 1 } , \ldots , t _ { R } } ^ { \prime } : S K _ { 1 } ( R ) \rightarrow S K _ { 1 } ( R ( t _ { 1 } , \ldots , t _ { n } ) )$ | $$\empty$$ | conf 0.379
png = s08706033.png(33) | ||
Steinberg module | |||||
122.(130.) | $e = \frac { | U | } { | G | } ( \sum _ { b \in B } b ) ( \sum _ { w \in W } \operatorname { sign } ( w ) w )$ | $$\empty$$ | conf 0.138
png = s13053016.png(16) | ||
Steinberg symbol | |||||
123.(24.)* | $( x _ { i j } ( a ) , x _ { k l } ( b ) ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } i \neq 1 , j \neq k } \\ { x _ { 1 } ( a b ) } & { \text { if } i \neq 1 , j = k } \end{array} \right.$ | $$\empty$$ | conf 0.381 F
png = s13054017.png(17) | ||
Tilting theory | |||||
124.(84.) | $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ | $$\empty$$ | conf 0.946
png = t130130105.png(105) | ||
Tits quadratic form | |||||
125.(18.) | $q R ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { i } x _ { j } + \sum _ { \langle \beta : i \rightarrow j ) \in Q _ { 1 } } x _ { , j } x _ { i } x _ { j }$ | $$\empty$$ | conf 0.112
png = t130140104.png(104) | ||
126.(40.) | $[ X ] \mapsto \chi _ { R } ( [ X ] ) = \sum _ { m = 0 } ^ { \infty } ( - 1 ) ^ { m } \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { m } ( X , X )$ | $$\empty$$ | conf 0.116
png = t130140118.png(118) | ||
127.(132.)* | $\operatorname { dim } _ { 1 } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z ^ { Q _ { 0 } }$ | $$\empty$$ | conf 0.287 F
png = t130140119.png(119) | ||
128.(37.)* | $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ | $$\empty$$ | conf 0.197 F
png = t130140140.png(140) | ||
129.(131.)* | $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ | $$\empty$$ | conf 0.819 F
png = t13014044.png(44) | ||
130.(25.) | $[ X ] \mapsto \chi _ { Q } ( [ X ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( X ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( X , X )$ | $$\empty$$ | conf 0.661
png = t13014048.png(48) | ||
131.(38.)* | $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ | $$\empty$$ | conf 0.481 F
png = t13014056.png(56) | ||
132.(139.)* | $\Phi ( x ) = \sum _ { j \in Q _ { 0 } } x _ { j } ^ { 2 } - \sum _ { i , j \in Q _ { 0 } } d _ { i j } x _ { i } x _ { j }$ | $$\empty$$ | conf 0.648 F
png = t1301406.png(6) | ||
Torus | |||||
133.(41.)* | $r = \alpha \operatorname { sin } u k + l ( 1 + \epsilon \operatorname { cos } u ) ( i \operatorname { cos } v + j \operatorname { sin } v )$ | $$\empty$$ | conf 0.585 F
png = t0933502.png(2) | ||
134.(122.)* | $d s ^ { 2 } = \alpha ^ { 2 } d u ^ { 2 } + l ^ { 2 } ( 1 + \epsilon \operatorname { cos } u ) ^ { 2 } d v ^ { 2 }$ | $$\empty$$ | conf 0.696 F
png = t0933507.png(7) | ||
Uniform distribution | |||||
135.(9.) | $u _ { 3 } ( x ) = \left\{ \begin{array} { l l } { \frac { x ^ { 2 } } { 2 } , } & { 0 \leq x < 1 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } ] } { 2 } , } & { 1 \leq x < 2 } \\ { \frac { [ x ^ { 2 } - 3 ( x - 1 ) ^ { 2 } + 3 ( x - 2 ) ^ { 2 } ] } { 2 } , } & { 2 \leq x < 3 } \\ { 0 , } & { x \notin [ 0,3 ] } \end{array} \right.$ | $$\empty$$ | conf 0.733
png = u09524027.png(27) | ||
136.(32.)* | $p ( x ) = \left\{ \begin{array} { l l } { \frac { 1 } { b - \alpha } , } & { x \in [ \alpha , b ] } \\ { 0 , } & { x \notin [ \alpha , b ] } \end{array} \right.$ | $$\empty$$ | conf 0.681 F
png = u0952403.png(3) | ||
137.(34.) | $u _ { n } ( x ) = \frac { 1 } { ( n - 1 ) ! } \sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) ( x - k ) _ { + } ^ { n - 1 }$ | $$\empty$$ | conf 0.569
png = u09524030.png(30) | ||
138.(109.) | $z _ { + } = \left\{ \begin{array} { l l } { z , } & { z > 0 } \\ { 0 , } & { z \leq 0 } \end{array} \right.$ | $$\empty$$ | conf 0.676
png = u09524034.png(34) | ||
139.(43.) | $F ( x ) = \left\{ \begin{array} { l l } { 0 , } & { x \leq a } \\ { \frac { x - a } { b - a } , } & { a < x \leq b } \\ { 1 , } & { x > b } \end{array} \right.$ | $$\empty$$ | conf 0.468
png = u0952407.png(7) | ||
140.(47.) | $p ( x _ { 1 } , \ldots , x _ { n } ) = \left\{ \begin{array} { l l } { C \neq 0 , } & { x \in D } \\ { 0 , } & { x \notin D } \end{array} \right.$ | $$\empty$$ | conf 0.705
png = u09524072.png(72) | ||
Unipotent group | |||||
141.(143.) | $\{ g \in \operatorname { GL } ( V ) : ( 1 - g ) ^ { n } = 0 \} , \quad n = \operatorname { dim } V$ | $$\empty$$ | conf 0.287
png = u0954106.png(6) | ||
Weyl module | |||||
142.(51.) | $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K$ | $$\empty$$ | conf 0.507
png = w120090122.png(122) | ||
143.(54.)* | $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } }$ | $$\empty$$ | conf 0.461 F
png = w120090135.png(135) | ||
144.(110.) | $\mathfrak { B } = \{ e _ { \pm } \alpha , h _ { \beta } : \alpha \in \Phi ^ { + } , \beta \in \Sigma \}$ | $$\empty$$ | conf 0.381
png = w120090259.png(259) | ||
145.(82.) | $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ | $$\empty$$ | conf 0.487
png = w120090342.png(342) | ||
146.(28.)* | $\mathfrak { S } _ { \{ 1 , \ldots , \lambda _ { 1 } \} } \times \mathfrak { S } _ { \{ \lambda _ { 1 } + 1 , \ldots , \lambda _ { 1 } + \lambda _ { 2 } \} } \times$ | $$\empty$$ | conf 0.312 F
png = w12009095.png(95) | ||
147.(104.) | $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} }$ | $$\empty$$ | conf 0.259
png = w12009096.png(96) | ||
Witt vector | |||||
148.(87.)* | $\langle \alpha > < b \rangle = \langle \alpha b \rangle , \quad \langle 1 \rangle = f _ { 1 } = V _ { 1 } =$ | $$\empty$$ | conf 0.351 F
png = w098100172.png(172) | ||
149.(123.)* | $\langle \alpha + b \rangle = \sum _ { n = 1 } ^ { \infty } V _ { n } \langle r _ { n } ( \alpha , b ) f$ | $$\empty$$ | conf 0.143 F
png = w098100177.png(177) | ||
150.(102.) | $\sigma ( \alpha _ { 1 } , \alpha _ { 2 } , \ldots ) = ( \alpha _ { 1 } ^ { p } , \alpha _ { 2 } ^ { p } , \ldots )$ | $$\empty$$ | conf 0.771
png = w098100190.png(190) |
Ulf Rehmann/Table of automatically generated TeX code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ulf_Rehmann/Table_of_automatically_generated_TeX_code&oldid=44162