Difference between revisions of "Band method"
(Importing text file) |
m (better) |
||
Line 9: | Line 9: | ||
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b1101309.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png" />; | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b1101309.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013012.png" />; | ||
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013013.png" />) the following multiplication table holds: | + | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013013.png" />) the following multiplication table holds: |
+ | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013014.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013015.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013016.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013017.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013018.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"></td> <td colname="6" style="background-color:white;" colspan="1"></td> <td colname="5" style="background-color:white;" colspan="1"></td> <td colname="4" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"></td> <td colname="2" style="background-color:white;" colspan="1"></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013019.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013020.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013021.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013022.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013023.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013024.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013025.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013026.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013027.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013028.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013029.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013030.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013031.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013032.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013033.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013034.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013035.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013036.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013037.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013038.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013039.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013040.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013041.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013042.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013043.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013044.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013045.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013046.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013047.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b11013048.png" /></td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> |
Latest revision as of 22:26, 1 January 2018
A framework for solving various positive-definite and strictly contractive extension problems and various interpolation problems from a unified abstract point of view. This method applies to algebras with band structure. An algebra with an identity
and an involution
is called an algebra with band structure if
admits a direct sum decomposition
![]() | (a1) |
where all the summands are subspaces of such that the following conditions are satisfied:
)
;
)
,
,
;
) the following multiplication table holds:
<tbody> </tbody>
|
where
![]() |
![]() |
![]() |
The space is called the band of
, and any element in
is called a diagonal. Also, let
![]() |
![]() |
![]() |
![]() |
The natural projections associated with the decomposition (a1) are denoted by , respectively.
An example of an algebra with band structure is the Wiener algebra of all complex-valued functions
on the unit circle
that have absolutely convergent Fourier series expansions
![]() |
with
![]() |
The involution on is complex conjugation. Let
be a fixed positive integer. A band structure on
is obtained by letting the summands in (a1) be defined by
![]() |
![]() |
![]() |
![]() |
![]() |
An element in an algebra
with involution
and unit
is called positive definite in
if
for some invertible
. Such an element in an algebra
with band structure is said to admit a right (respectively, left) spectral factorization if
and
can be taken in
(respectively,
).
Hereafter, is assumed to be a
-subalgebra of a unital
-algebra
, with the unit of
equal to the unit of
. Let
be an element in the band
. An
-positive extension of
is an element
that is positive definite in
such that
![]() |
for certain elements and
. A band extension of
is an
-positive extension
of
such that
. The main problems are to determine conditions under which a band extension of
exists, to find the band extension when it exists, and to describe all
-positive extensions of
when
has a band extension. The following two statements provide solutions of these problems.
I) Let be an algebra with band structure (a1), and let
. Then
has a band extension
with a right spectral factorization relative to (a1) if and only if the equation
![]() | (a2) |
has a solution with the following properties:
i) ;
ii) is invertible and
;
iii) for some
which is invertible in
. Furthermore, in this case such an element
is obtained by taking
![]() |
where is any solution of (a2) satisfying i)–iii).
To describe all -positive extensions of
, it will be additionally assumed that the following axiom holds:
Axiom : If
and
, then
.
This axiom holds if is closed in
.
II) Let be an algebra with band structure (a1) in a unital
-algebra
, and assume that axiom
holds. Let
, and suppose that
has a band extension
which admits a right and left spectral factorization relative to (a1):
![]() |
![]() |
Then each -positive extension of
is of the form
![]() | (a3) |
where the free parameter is an arbitrary element in
such that
. Moreover, the mapping
provides a one-to-one correspondence between all such
and all
-positive extensions of
.
In the above statement, may be replaced by
![]() |
where now the free parameter is an arbitrary element of
such that
.
The right-hand side of (a3) yields a positive extension (i.e., an extension which is positive definite in ) if and only if the free parameter
is such that
is positive definite in
.
An alternative characterization of the band extension is provided by an abstract maximum entropy principle. For this it is necessary to assume two additional axioms. An element is positive semi-definite in
if
for some
.
Axiom : If
is positive semi-definite in
, then
is positive semi-definite in
.
Axiom : If
is positive semi-definite in
and
, then
.
Any element of
with a right spectral factorization can be factored uniquely in the form
![]() |
where and
is invertible with
. The element
is called the right multiplicative diagonal of
and is denoted by
. The maximum entropy principle states that if a self-adjoint element
in
(cf. also Self-adjoint operator) has a band extension
with a right spectral factorization, then for any
-positive extension
of
having a right spectral factorization,
![]() |
with equality only if .
Solution of the Carathéodory–Toeplitz extension problem.
There are many applications of these results to various algebras of functions, matrix-valued functions, and matrices. When applied to the Wiener algebra with the band structure described above, they yield a description of the solutions of the classical Carathéodory–Toeplitz extension problem.
Given a trigonometric polynomial
![]() | (a4) |
one looks for a function in
with the property that
for every
. The following statement gives the solution.
The Carathéodory–Toeplitz extension problem for the trigonometric polynomial (a4) is solvable if and only if the matrix
![]() |
is positive definite. In that case there exists a unique solution with the additional property that the
th Fourier coefficient of
is equal to
for
.
To obtain , let
![]() |
![]() |
and define
![]() |
and
![]() |
Then for
and
for
and
![]() |
Furthermore, every solution of the Carathéodory–Toeplitz problem is of the form
![]() | (a5) |
where is an arbitrary function with
for
and with the
th Fourier coefficient of
equal to
for
. Moreover, (a5) gives a one-to-one correspondence between all such
and all solutions
. Additionally, the band solution
is the unique solution
that maximizes the entropy integral
![]() |
This solution is called the maximum entropy solution.
Strictly contractive extension problems, such as the Nehari extension problem of complex analysis, can be reduced to band extension problems. Further details can be found in [a1], Chapts. XXXIV–XXXV.
The band method has its origin in the papers [a2], [a3], and has been developed further in [a4], [a5], [a6]. Additional references can also be found in [a1].
References
[a1] | I. Gohberg, S. Goldberg, M.A. Kaashoek, "Classes of linear operators II" , Operator Theory: Advances and Applications , 63 , Birkhäuser (1993) |
[a2] | H. Dym, I. Gohberg, "Extensions of kernels of Fredholm operators" J. Anal. Math. , 42 (1982/3) pp. 51–97 |
[a3] | H. Dym, I. Gohberg, "A new class of contractive interpolants and maximum entropy principles" , Operator Theory: Advances and Applications , 29 , Birkhäuser (1988) pp. 117–150 |
[a4] | I. Gohberg, M.A. Kaashoek, H.J. Woerdeman, "The band method for positive and conntractive extension problems" J. Operator Th. , 22 (1989) pp. 109–155 |
[a5] | I. Gohberg, M.A. Kaashoek, H.J. Woerdeman, "The band method for positive and conntractive extension problems: An alternative version and new applications" Integral Eq. Operator Th. , 12 (1989) pp. 343–382 |
[a6] | I. Gohberg, M.A. Kaashoek, H.J. Woerdeman, "A maximum entropy principle in the general framework of the band method" J. Funct. Anal. , 95 (1991) pp. 231–254 |
Band method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Band_method&oldid=42683