Difference between revisions of "Closed monoidal category"
(TeX partly done) |
m (link) |
||
Line 35: | Line 35: | ||
Some examples of monoidal categories are: | Some examples of monoidal categories are: | ||
− | E1) any category with finite products is monoidal if one takes $a\otimes b$ to be the (chosen) product of the objects $a$ and $b$, with $e$ the terminal object; $\alpha,\lambda,\rho$ are the unique isomorphisms that commute with the appropriate projections; | + | E1) any category with finite products is monoidal if one takes $a\otimes b$ to be the (chosen) product of the objects $a$ and $b$, with $e$ the [[terminal object]]; $\alpha,\lambda,\rho$ are the unique isomorphisms that commute with the appropriate projections; |
E2) the usual "tensor products" give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in $\mathcal{C}$. | E2) the usual "tensor products" give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in $\mathcal{C}$. |
Revision as of 21:03, 21 December 2017
A category $\mathcal{C}$ is monoidal if it consists of the following data:
1) a category $\mathcal{C}$;
2) a bifunctor $\otimes : \mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C}$;
3) an object $e\in\mathcal{C}$; and
4) three natural isomorphisms $\alpha,\lambda,\rho$ such that
A1) $\alpha_{a,b,c} : a \otimes (b \otimes c) \cong (a \otimes b) \otimes c$ is natural for all $a,b,c \in \mathcal{C}$ and the diagram $$ \begin{array}{ccccc} a \otimes (b \otimes (c \otimes d)) & \stackrel{\alpha}{\rightarrow} & (a \otimes b) \otimes (c \otimes d) & \stackrel{\alpha}{\rightarrow} & ((a \otimes b) \otimes c) \otimes d \\ \downarrow\mathrm{id}\otimes\alpha & & & & \uparrow \alpha\otimes\mathrm{id} \\ a \otimes ((b \otimes c) \otimes d) & & \stackrel{\alpha}{\rightarrow} & & (a \otimes (b \otimes c)) \otimes d \end{array} $$ commutes for all $a,b,c,d \in \mathcal{C}$;
A2) $\lambda$ and $\rho$ are natural and $\lambda : e \otimes a \cong a$, $\rho : a \otimes e \cong a$ for all objects $a \in \mathcal{C}$ and the diagram $$ \begin{array}{ccc} a \otimes (e \otimes c) & \stackrel{\alpha}{\rightarrow} & (a \otimes e) \otimes c \\ \downarrow\mathrm{id}\otimes\lambda & & \downarrow\rho\otimes\mathrm{id} \\ a \otimes c & = & a \otimes c \end{array} $$ commutes for all $a.c \in \mathcal{C}$;
A3) $\lambda_e = \rho_e : e \otimes e \rightarrow e$.
These axioms imply that all such diagrams commute.
Some examples of monoidal categories are:
E1) any category with finite products is monoidal if one takes $a\otimes b$ to be the (chosen) product of the objects $a$ and $b$, with $e$ the terminal object; $\alpha,\lambda,\rho$ are the unique isomorphisms that commute with the appropriate projections;
E2) the usual "tensor products" give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in $\mathcal{C}$.
Closed categories.
A monoidal category is said to be symmetric if it comes with isomorphisms : natural on such that the following diagrams all commute:
, : :
A closed category is a symmetric monoidal category in which each functor has a specified right-adjoint .
Some examples of closed monoidal categories are:
E3) the category of relations, whose objects are sets and in which an arrow is a subset ; the object is the Cartesian product of the two sets, which is not the product in this category;
E4) the subsets of a monoid (a poset, hence a category); if , are two subsets of , then is while is .
References
[a1] | M. Barr, C. Wells, "Category theory for computing science" , CRM (1990) |
[a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) |
Closed monoidal category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Closed_monoidal_category&oldid=42575