Difference between revisions of "Universe"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | A set | + | A set $\mathcal{U}$ which is closed under the formation of unions, singletons, subelements, power sets, and pairs; more precisely: |
− | 1) | + | 1) $i \in \mathcal{U}$, $X_i \in \mathcal{U}$ implies $\cup_{i\in I}X_i \in \mathcal{U}$; |
− | 2) | + | 2) $x \in \mathcal{U}$ implies $\{x\} \in \mathcal{U}$; |
− | 3) | + | 3) $x \in X \in \mathcal{U}$ implies $x \in \mathcal{U}$; |
− | 4) | + | 4) $X \in \mathcal{U}$ implies $\mathcal{P}X \in \mathcal{U}$; |
− | 5) | + | 5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$. |
− | The existence of infinite universes in [[ | + | The existence of infinite universes in [[axiomatic set theory]] is equivalent to the existence of strongly inaccessible cardinals (cf. [[Cardinal number]]). A universe is a model for Zermelo–Fraenkel set theory. Universes were introduced by A. Grothendieck in the context of [[category]] theory in order to introduce the "set" of natural transformations of functors between ($\mathcal{U}$-) categories, and in order to admit other "large" category-theoretic constructions. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Barwise (ed.) , ''Handbook of mathematical logic'' , North-Holland (1977) ((especially the article of D.A. Martin on Descriptive set theory))</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Gabriel, "Des catégories abéliennes" ''Bull. Soc. Math. France'' , '''90''' (1962) pp. 323–448</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Barwise (ed.) , ''Handbook of mathematical logic'' , North-Holland (1977) ((especially the article of D.A. Martin on Descriptive set theory))</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Gabriel, "Des catégories abéliennes" ''Bull. Soc. Math. France'' , '''90''' (1962) pp. 323–448</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Kunen, "Set theory" , North-Holland (1980)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Revision as of 18:20, 12 October 2017
A set $\mathcal{U}$ which is closed under the formation of unions, singletons, subelements, power sets, and pairs; more precisely:
1) $i \in \mathcal{U}$, $X_i \in \mathcal{U}$ implies $\cup_{i\in I}X_i \in \mathcal{U}$;
2) $x \in \mathcal{U}$ implies $\{x\} \in \mathcal{U}$;
3) $x \in X \in \mathcal{U}$ implies $x \in \mathcal{U}$;
4) $X \in \mathcal{U}$ implies $\mathcal{P}X \in \mathcal{U}$;
5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$.
The existence of infinite universes in axiomatic set theory is equivalent to the existence of strongly inaccessible cardinals (cf. Cardinal number). A universe is a model for Zermelo–Fraenkel set theory. Universes were introduced by A. Grothendieck in the context of category theory in order to introduce the "set" of natural transformations of functors between ($\mathcal{U}$-) categories, and in order to admit other "large" category-theoretic constructions.
References
[a1] | J. Barwise (ed.) , Handbook of mathematical logic , North-Holland (1977) ((especially the article of D.A. Martin on Descriptive set theory)) |
[a2] | P. Gabriel, "Des catégories abéliennes" Bull. Soc. Math. France , 90 (1962) pp. 323–448 |
[a3] | K. Kunen, "Set theory" , North-Holland (1980) |
Universe. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universe&oldid=42050