# Universe

A set $\mathcal{U}$ which is closed under the formation of unions, singletons, subelements, power sets, and pairs; more precisely:

1) $I \in \mathcal{U}$, $X_i \in \mathcal{U}$ implies $\cup_{i\in I}X_i \in \mathcal{U}$;

2) $x \in \mathcal{U}$ implies $\{x\} \in \mathcal{U}$;

3) $x \in X \in \mathcal{U}$ implies $x \in \mathcal{U}$;

4) $X \in \mathcal{U}$ implies $\mathcal{P}X \in \mathcal{U}$;

5) $(x,y) \in \mathcal{U}$ if and only if $x,y \in \mathcal{U}$.

The existence of infinite universes in axiomatic set theory is equivalent to the existence of strongly inaccessible cardinals (cf. Cardinal number). A universe is a model for Zermelo–Fraenkel set theory. Universes were introduced by A. Grothendieck in the context of category theory in order to introduce the "set" of natural transformations of functors between ($\mathcal{U}$-) categories, and in order to admit other "large" category-theoretic constructions.

#### References

[a1] | J. Barwise (ed.) , Handbook of mathematical logic , North-Holland (1977) ((especially the article of D.A. Martin on Descriptive set theory)) |

[a2] | P. Gabriel, "Des catégories abéliennes" Bull. Soc. Math. France , 90 (1962) pp. 323–448 |

[a3] | K. Kunen, "Set theory" , North-Holland (1980) |

**How to Cite This Entry:**

Universe.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Universe&oldid=42424