Namespaces
Variants
Actions

Difference between revisions of "Meier theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633601.png" /> be a meromorphic function in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633602.png" />; then all points of the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633603.png" /> except, possibly, for a set of the first category on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633604.png" />, are either Plessner points or Meier points. By definition, a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633605.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633606.png" /> is a Plessner point for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633607.png" /> if the angular cluster set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633608.png" /> is total (i.e., coincides with the whole extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m0633609.png" />) for every angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336010.png" /> between pairs of chords through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336011.png" />. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336012.png" /> is said to be a Meier point (or to have the Meier property) if: 1) the complete [[Cluster set|cluster set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336014.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336015.png" /> is subtotal, i.e. does not coincide with the whole extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336016.png" />; and 2) the set of all limit values along arbitrary chords of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336017.png" /> drawn at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336018.png" /> is identical to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336019.png" />. The theorem was proved by K. Meier [[#References|[1]]].
+
Let $f(z)$ be a [[meromorphic function]] in the unit disc $D = \{ z \in \mathbf{C} : |z| < 1 \}$; then all points of the circle $\Gamma = \{ z \in \mathbf{C} : |z| = 1 \}$ except, possibly, for a [[First category (set of)|set of the first category]] on $\Gamma$, are either Plessner points or Meier points. By definition, a point $e^{i\theta}$ on $\Gamma$ is a Plessner point for $f$ if the angular cluster set $C_A(e^{i\theta},f)$ is total (i.e., coincides with the whole extended complex plane $\bar{\mathbf{C}}$) for every angle $\delta$ between pairs of chords through $e^{i\theta}$. The point $e^{i\theta}$ is said to be a Meier point (or to have the Meier property) if: 1) the complete [[cluster set]] $C(e^{i\theta},f)$ of $f$ at $e^{i\theta}$ is subtotal, i.e. does not coincide with the whole extended complex plane; and 2) the set of all limit values along arbitrary chords of the disc $D$ drawn at the point $e^{i\theta}$ is identical to $C(e^{i\theta},f)$. The theorem was proved by K. Meier [[#References|[1]]].
  
Meier's theorem is the analogue, in terms of the category of a set, of the [[Plessner theorem|Plessner theorem]], which is formulated in terms of measure theory. A sharpening of Meier's theorem is given in [[#References|[3]]].
+
Meier's theorem is the analogue, in terms of the category of a set, of the [[Plessner theorem]], which is formulated in terms of measure theory. A sharpening of Meier's theorem is given in [[#References|[3]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  K. Meier,  "Ueber die Randwerte der meromorphen Funktionen"  ''Math. Ann'' , '''142'''  (1961)  pp. 328–344</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Gavrilov,  A.N. Kanatnikov,  "Characterization of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063360/m06336020.png" /> for meromorphic functions"  ''Soviet Math. Dokl.'' , '''18''' :  2  (1977)  pp. 15–17  ''Dokl. Akad. Nauk SSSR'' , '''233''' :  1  (1977)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  K. Meier,  "Ueber die Randwerte der meromorphen Funktionen"  ''Math. Ann'' , '''142'''  (1961)  pp. 328–344</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.F. Collingwood,  A.J. Lohwater,  "The theory of cluster sets" , Cambridge Univ. Press  (1966)  pp. Chapt. 1;6</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Gavrilov,  A.N. Kanatnikov,  "Characterization of the set $M(f)$ for meromorphic functions"  ''Soviet Math. Dokl.'' , '''18''' :  2  (1977)  pp. 15–17  ''Dokl. Akad. Nauk SSSR'' , '''233''' :  1  (1977)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 19:43, 18 April 2017

Let $f(z)$ be a meromorphic function in the unit disc $D = \{ z \in \mathbf{C} : |z| < 1 \}$; then all points of the circle $\Gamma = \{ z \in \mathbf{C} : |z| = 1 \}$ except, possibly, for a set of the first category on $\Gamma$, are either Plessner points or Meier points. By definition, a point $e^{i\theta}$ on $\Gamma$ is a Plessner point for $f$ if the angular cluster set $C_A(e^{i\theta},f)$ is total (i.e., coincides with the whole extended complex plane $\bar{\mathbf{C}}$) for every angle $\delta$ between pairs of chords through $e^{i\theta}$. The point $e^{i\theta}$ is said to be a Meier point (or to have the Meier property) if: 1) the complete cluster set $C(e^{i\theta},f)$ of $f$ at $e^{i\theta}$ is subtotal, i.e. does not coincide with the whole extended complex plane; and 2) the set of all limit values along arbitrary chords of the disc $D$ drawn at the point $e^{i\theta}$ is identical to $C(e^{i\theta},f)$. The theorem was proved by K. Meier [1].

Meier's theorem is the analogue, in terms of the category of a set, of the Plessner theorem, which is formulated in terms of measure theory. A sharpening of Meier's theorem is given in [3].

References

[1] K. Meier, "Ueber die Randwerte der meromorphen Funktionen" Math. Ann , 142 (1961) pp. 328–344
[2] E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 1;6
[3] V.I. Gavrilov, A.N. Kanatnikov, "Characterization of the set $M(f)$ for meromorphic functions" Soviet Math. Dokl. , 18 : 2 (1977) pp. 15–17 Dokl. Akad. Nauk SSSR , 233 : 1 (1977)
How to Cite This Entry:
Meier theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meier_theorem&oldid=41112
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article