Namespaces
Variants
Actions

Difference between revisions of "Dimension function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Tex done)
(See also Dimension of a partially ordered set)
 
Line 3: Line 3:
 
There is also a more general definition of a dimension function on an [[orthomodular lattice]] or on an orthomodular partially ordered set, where the values of the dimension function can be arbitrary real numbers, or even functions (see [[#References|[3]]]).
 
There is also a more general definition of a dimension function on an [[orthomodular lattice]] or on an orthomodular partially ordered set, where the values of the dimension function can be arbitrary real numbers, or even functions (see [[#References|[3]]]).
  
See also: [[Rank of a partially ordered set]].
+
See also: [[Rank of a partially ordered set]]; [[Dimension of a partially ordered set]]
  
 
====References====
 
====References====

Latest revision as of 20:59, 18 December 2016

An integer-valued function $d$ on a lattice $L$ (that is, a mapping $D : L \rightarrow \mathbf{Z}$) that satisfies the conditions: 1) $d(x \vee y) + d(x \wedge y) = d(x) + d(y)$ for any $x,y \in L$; and 2) if $[x,y]$ is an elementary interval in $L$, then $d(y) = d(x)+1$. For a lattice in which all bounded chains are finite, the existence of a dimension function is equivalent to the modular property.

There is also a more general definition of a dimension function on an orthomodular lattice or on an orthomodular partially ordered set, where the values of the dimension function can be arbitrary real numbers, or even functions (see [3]).

See also: Rank of a partially ordered set; Dimension of a partially ordered set

References

[1] L.A. Skornyakov, "Elements of lattice theory" , Hindushtan Publ. Comp. (1977) (Translated from Russian)
[2] G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973)
[3] G. Kalmbach, "Orthomodular lattices" , Acad. Press (1983)
How to Cite This Entry:
Dimension function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dimension_function&oldid=40061
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article