Difference between revisions of "Matrix ring"
(Tex partly done) |
(Tex partly done) |
||
Line 1: | Line 1: | ||
''full matrix ring'' | ''full matrix ring'' | ||
− | The ring of all square matrices of a fixed order over a ring $R$, with the operations of [[matrix addition]] and [[matrix multiplication]]. The ring of | + | The ring of all square matrices of a fixed order over a ring $R$, with the operations of [[matrix addition]] and [[matrix multiplication]]. The ring of $(n \times n)$-dimensional matrices over $R$ is denoted by $R_n$ or $M_n(R)$. Throughout this article $R$ is an [[Associative rings and algebras|associative ring]] [[unital ring|with identity]]. |
− | The ring | + | The ring $R_n$ is isomorphic to the ring $\mathop{End}(M)$ of all endomorphisms of the free right $R$-module $M = R^n$, possessing a basis with $n$ elements. The [[identity matrix]] $E_n = \text{diag}(1,\ldots,1)$ is the identity in $R_n$. An associative ring $A$ with identity 1 is isomorphic to $R_n$ if and only if there is in $A$ a set of $n^2$ elements $e_{ij}$, $i,j=1,\ldots,n$, subject to the following conditions: |
− | 1) | + | 1) $e_{ij}e_{kl} = \delta_{jk} e_{il}$, $\sum_{i=1}^n e_{ii}e_{ii} = 1$; |
− | 2) the centralizer of the set of elements | + | 2) the centralizer of the set of elements $e_{ij}$ in $A$ is isomorphic to $R$. |
− | The centre of | + | The centre of $R_n$ coincides with $Z(R) E_n$, where $Z(R)$ is the centre of $R$; for $n>1$ the ring $R_n$ is non-commutative. |
− | The multiplicative group of the ring | + | The multiplicative group of the ring $R_n$ (the group of all invertible elements), called the [[general linear group]], is denoted by $\mathop{GL}_n(R)$. A matrix from $R_n$ is invertible in $R_n$ if and only if its columns form a basis of the free right module of all $(n \times 1)$-dimensional matrices over $R$. If $R$ is commutative, then the [[determinant]] is defined as a multiplicative map from $R_n$ to $R$ and invertibility of a matrix $X$ in $R_n$ is equivalent to the invertibility of its determinant, $\det X$, in $R$. The isomorphism $R_{mn} \sim (R_m)_n$ holds. |
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285043.png" /> is simple if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285044.png" /> is simple, for the two-sided ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285045.png" /> are of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285047.png" /> is a two-sided ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285048.png" />. An [[Artinian ring|Artinian ring]] is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285049.png" /> denotes the [[Jacobson radical|Jacobson radical]] of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285051.png" />. Consequently, every matrix ring over a semi-simple ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285052.png" /> is semi-simple. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285053.png" /> is regular (i.e. if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285054.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285056.png" />), then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285057.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285058.png" /> is a ring with an invariant basis number, i.e. the number of elements in a basis of each free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285059.png" />-module does not depend of the choice of the basis, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285060.png" /> also has this property. The rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285062.png" /> are equivalent in the sense of Morita (see [[Morita equivalence|Morita equivalence]]): The category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285063.png" />-modules is equivalent to the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285064.png" />-modules. However, the fact that projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285065.png" />-modules are free does not necessarily entail that projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285066.png" />-modules are free too. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285067.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285068.png" />, then there exist finitely-generated projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285069.png" />-modules which are not free. | The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285043.png" /> is simple if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285044.png" /> is simple, for the two-sided ideals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285045.png" /> are of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285046.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285047.png" /> is a two-sided ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285048.png" />. An [[Artinian ring|Artinian ring]] is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285049.png" /> denotes the [[Jacobson radical|Jacobson radical]] of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285051.png" />. Consequently, every matrix ring over a semi-simple ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285052.png" /> is semi-simple. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285053.png" /> is regular (i.e. if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285054.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285056.png" />), then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285057.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285058.png" /> is a ring with an invariant basis number, i.e. the number of elements in a basis of each free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285059.png" />-module does not depend of the choice of the basis, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285060.png" /> also has this property. The rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285062.png" /> are equivalent in the sense of Morita (see [[Morita equivalence|Morita equivalence]]): The category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285063.png" />-modules is equivalent to the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285064.png" />-modules. However, the fact that projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285065.png" />-modules are free does not necessarily entail that projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285066.png" />-modules are free too. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285067.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285068.png" />, then there exist finitely-generated projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285069.png" />-modules which are not free. |
Revision as of 16:18, 12 September 2016
full matrix ring
The ring of all square matrices of a fixed order over a ring $R$, with the operations of matrix addition and matrix multiplication. The ring of $(n \times n)$-dimensional matrices over $R$ is denoted by $R_n$ or $M_n(R)$. Throughout this article $R$ is an associative ring with identity.
The ring $R_n$ is isomorphic to the ring $\mathop{End}(M)$ of all endomorphisms of the free right $R$-module $M = R^n$, possessing a basis with $n$ elements. The identity matrix $E_n = \text{diag}(1,\ldots,1)$ is the identity in $R_n$. An associative ring $A$ with identity 1 is isomorphic to $R_n$ if and only if there is in $A$ a set of $n^2$ elements $e_{ij}$, $i,j=1,\ldots,n$, subject to the following conditions:
1) $e_{ij}e_{kl} = \delta_{jk} e_{il}$, $\sum_{i=1}^n e_{ii}e_{ii} = 1$;
2) the centralizer of the set of elements $e_{ij}$ in $A$ is isomorphic to $R$.
The centre of $R_n$ coincides with $Z(R) E_n$, where $Z(R)$ is the centre of $R$; for $n>1$ the ring $R_n$ is non-commutative.
The multiplicative group of the ring $R_n$ (the group of all invertible elements), called the general linear group, is denoted by $\mathop{GL}_n(R)$. A matrix from $R_n$ is invertible in $R_n$ if and only if its columns form a basis of the free right module of all $(n \times 1)$-dimensional matrices over $R$. If $R$ is commutative, then the determinant is defined as a multiplicative map from $R_n$ to $R$ and invertibility of a matrix $X$ in $R_n$ is equivalent to the invertibility of its determinant, $\det X$, in $R$. The isomorphism $R_{mn} \sim (R_m)_n$ holds.
The ring is simple if and only if is simple, for the two-sided ideals in are of the form , where is a two-sided ideal in . An Artinian ring is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If denotes the Jacobson radical of the ring , then . Consequently, every matrix ring over a semi-simple ring is semi-simple. If is regular (i.e. if for every there is a such that ), then so is . If is a ring with an invariant basis number, i.e. the number of elements in a basis of each free -module does not depend of the choice of the basis, then also has this property. The rings and are equivalent in the sense of Morita (see Morita equivalence): The category of -modules is equivalent to the category of -modules. However, the fact that projective -modules are free does not necessarily entail that projective -modules are free too. For instance, if is a field and , then there exist finitely-generated projective -modules which are not free.
References
[1] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
[2] | J. Lambek, "Lectures on rings and modules" , Blaisdell (1966) |
[3] | L.A. Bokut', "Associative rings" , 1 , Novosibirsk (1977) (In Russian) |
Comments
References
[a1] | P.M. Cohn, "Algebra" , 1–2 , Wiley (1974–1977) |
Matrix ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_ring&oldid=39107