Difference between revisions of "Continuum, cardinality of the"
m |
(Category:Set theory) |
||
Line 8: | Line 8: | ||
$$2^{\aleph_0}=3^{\aleph_0}=\dots=\aleph_0^{\aleph_0}=\aleph_1^{\aleph_0}=\mathfrak c^{\aleph_0}=\mathfrak c.$$ | $$2^{\aleph_0}=3^{\aleph_0}=\dots=\aleph_0^{\aleph_0}=\aleph_1^{\aleph_0}=\mathfrak c^{\aleph_0}=\mathfrak c.$$ | ||
− | The [[Continuum | + | The [[Continuum hypothesis]] states that the cardinality of the continuum is the first uncountable cardinal number, that is, |
$$\mathfrak c=\aleph_1.$$ | $$\mathfrak c=\aleph_1.$$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kuratowski, A. Mostowski, "Set theory" , North-Holland (1968)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Kuratowski, A. Mostowski, "Set theory" , North-Holland (1968)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | [[Category:Descriptive set theory]] |
Revision as of 19:32, 17 October 2014
The cardinal number $\mathfrak c=2^{\aleph_0}$, i.e. the cardinality of the set of all subsets of the natural numbers. The following sets have the cardinality of the continuum: 1) the set $\mathbf R$ of all real numbers; 2) the set of all points in the interval $(0,1)$; 3) the set of all irrational numbers in this interval; 4) the set of all points of the space $\mathbf R^n$, where $n$ is a positive integer; 5) the set of all transcendental numbers; and 6) the set of all continuous functions of a real variable. The cardinality of the continuum cannot be represented as a countable sum of smaller cardinal numbers. For any cardinal number $\alpha$ such that $2\leq\alpha\leq\mathfrak c$,
$$\alpha^{\aleph_0}=\mathfrak c.$$
In particular,
$$2^{\aleph_0}=3^{\aleph_0}=\dots=\aleph_0^{\aleph_0}=\aleph_1^{\aleph_0}=\mathfrak c^{\aleph_0}=\mathfrak c.$$
The Continuum hypothesis states that the cardinality of the continuum is the first uncountable cardinal number, that is,
$$\mathfrak c=\aleph_1.$$
References
[1] | K. Kuratowski, A. Mostowski, "Set theory" , North-Holland (1968) |
Continuum, cardinality of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Continuum,_cardinality_of_the&oldid=33743