Difference between revisions of "Lipschitz condition"
(TeX encoding is done) |
m |
||
Line 1: | Line 1: | ||
+ | |||
+ | {{TEX|done}} | ||
+ | |||
A restriction on the behaviour of increase of a function. If for any points $x$ and $x'$ belonging to an interval $[a,b]$ the increase of a function $f$ satisfies the inequality | A restriction on the behaviour of increase of a function. If for any points $x$ and $x'$ belonging to an interval $[a,b]$ the increase of a function $f$ satisfies the inequality | ||
\begin{equation}\label{eq:1} | \begin{equation}\label{eq:1} |
Revision as of 15:42, 23 November 2012
A restriction on the behaviour of increase of a function. If for any points $x$ and $x'$ belonging to an interval $[a,b]$ the increase of a function $f$ satisfies the inequality
\begin{equation}\label{eq:1}
|f(x)-f(x')| \leq M|x-x'|^{\alpha},
\end{equation}
where $0<\alpha\leq1$ and $M$ is a constant, then one says that $f$ satisfies a Lipschitz condition of order $\alpha$ on $[a,b]$ and writes $f\in\operatorname{Lip}\alpha$, $f\in\operatorname{Lip}_M\alpha$ or $f\in H^{\alpha}(M)$. Every function that satisfies a Lipschitz condition with some $\alpha>0$ on $[a,b]$ is uniformly continuous on $[a,b]$, and functions that satisfy a Lipschitz condition of order $\alpha=1$ are absolutely continuous (cf. Absolute continuity; Uniform continuity). A function that has a bounded derivative on $[a,b]$ satisfies a Lipschitz condition on $[a,b]$ with any $\alpha\leq 1$.
The Lipschitz condition \eqref{eq:1} is equivalent to the condition \begin{equation} \omega(\delta,f)\leq M\delta^{\alpha}, \end{equation}
where $\omega(\delta,f)$ is the modulus of continuity (cf. Continuity, modulus of) of $f$ on $[a,b]$. Lipschitz conditions were first considered by R. Lipschitz [1] as a sufficient condition for the convergence of the Fourier series of $f$. In the case $0<\alpha<1$ the condition \eqref{eq:1} is also called a Hölder condition of order $\alpha$.
References
[1] | R. Lipschitz, "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio" J. Reine Angew. Math. , 63 (1864) pp. 296–308 |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001 |
[3] | I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian) MR1868029 MR0196342 MR0196341 MR0196340 Zbl 1034.01022 Zbl 0178.39701 Zbl 0136.36302 Zbl 0133.31101 |
Lipschitz condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_condition&oldid=28839