Namespaces
Variants
Actions

Difference between revisions of "Positive variation of a function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
Line 1: Line 1:
One of the two terms whose sum is the complete change, or (total) variation, of the function (cf. [[Variation of a function|Variation of a function]]) over a given interval. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739701.png" /> be a function of a real variable given on the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739702.png" /> and taking real values. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739703.png" /> be any partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739704.png" /> and let
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739705.png" /></td> </tr></table>
 
  
where the summation is over those values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739706.png" /> for which the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739707.png" /> is non-negative. The quantity
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739708.png" /></td> </tr></table>
+
{{MSC|26A45}}
  
is called the positive variation of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p0739709.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p07397010.png" />. Of course, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073970/p07397011.png" />. The concept of the positive variation of a function was introduced by C. Jordan [[#References|[1]]]. See also [[Negative variation of a function|Negative variation of a function]].
+
[[Category:Analysis]]
 +
 
 +
{{TEX|done}}
 +
 
 +
Also called ''positive increment of a function''
 +
 
 +
One  of the two terms whose sum is the complete increment or [[Variation of a  function|variation of a function]] $f$ on a given interval.  
 +
 
 +
'''Definition'''
 +
Consider  an interval $I=[a,b]\subset \mathbb R$ and the collection $\Pi$ of  ordered $(N+1)$-ples of points $a_1<a_2 < \ldots <   a_{N+1}\in  I$,
 +
where $N$ is an arbitrary natural number. The negative variation of a function $f: I\to \mathbb R$ is given by
 +
\[
 +
TV^+ (f) := \sup \left\{ \sum_{i=1}^N \max \{(f(a_{i+1})-f(a_i)), 0\} : (a_1, \ldots, a_{N+1})\in\Pi\right\}\, .
 +
\]
 +
 
 +
The concept of positive variation of a function was introduced by C. Jordan in {{Cite|Jo}} and it is used to prove the [[Jordan decomposition (of a function)|Jordan decomposition]] of a [[Function of bounded variation|function of bounded variation]]. See also [[Negative variation of a function|Negative variation of a function]] and [[Variation of a function|Variation of a function]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"C. Jordan,  "Sur la série de Fourier"  ''C.R. Acad. Sci. Paris'' , '''92'''  (1881)  pp. 228–230</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Lebesgue,  "Leçons sur l'intégration et la récherche des fonctions primitives" , Gauthier-Villars  (1928)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|AFP}}||  L. Ambrosio, N.  Fusco, D.  Pallara, "Functions of bounded    variations  and  free  discontinuity  problems". Oxford Mathematical    Monographs. The      Clarendon Press,  Oxford University Press, New  York,    2000.      {{MR|1857292}}{{ZBL|0957.49001}}
 +
|-
 +
|valign="top"|{{Ref|Co}}|| D. L. Cohn, "Measure theory". Birkhäuser, Boston 1993.
 +
|-
 +
|valign="top"|{{Ref|Jo}}|| C. Jordan,  "Sur la série de Fourier"  ''C.R. Acad. Sci. Paris'' , '''92'''  (1881)  pp. 228–230
 +
|-
 +
|valign="top"|{{Ref|Le}}|| H. Lebesgue,  "Leçons sur l'intégration et la récherche des fonctions primitives", Gauthier-Villars  (1928).
 +
|-
 +
|valign="top"|{{Ref|Ro}}|| H.L. Royden,  "Real analysis" , Macmillan  (1969). {{MR|0151555}} {{ZBL|0197.03501}}
 +
|-
 +
|}

Latest revision as of 08:46, 16 September 2012


2020 Mathematics Subject Classification: Primary: 26A45 [MSN][ZBL]

Also called positive increment of a function

One of the two terms whose sum is the complete increment or variation of a function $f$ on a given interval.

Definition Consider an interval $I=[a,b]\subset \mathbb R$ and the collection $\Pi$ of ordered $(N+1)$-ples of points $a_1<a_2 < \ldots < a_{N+1}\in I$, where $N$ is an arbitrary natural number. The negative variation of a function $f: I\to \mathbb R$ is given by \[ TV^+ (f) := \sup \left\{ \sum_{i=1}^N \max \{(f(a_{i+1})-f(a_i)), 0\} : (a_1, \ldots, a_{N+1})\in\Pi\right\}\, . \]

The concept of positive variation of a function was introduced by C. Jordan in [Jo] and it is used to prove the Jordan decomposition of a function of bounded variation. See also Negative variation of a function and Variation of a function.

References

[AFP] L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
[Co] D. L. Cohn, "Measure theory". Birkhäuser, Boston 1993.
[Jo] C. Jordan, "Sur la série de Fourier" C.R. Acad. Sci. Paris , 92 (1881) pp. 228–230
[Le] H. Lebesgue, "Leçons sur l'intégration et la récherche des fonctions primitives", Gauthier-Villars (1928).
[Ro] H.L. Royden, "Real analysis" , Macmillan (1969). MR0151555 Zbl 0197.03501
How to Cite This Entry:
Positive variation of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive_variation_of_a_function&oldid=27950
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article