Difference between revisions of "Exact sequence"
(latex details) |
(latex details) |
||
Line 15: | Line 15: | ||
$$ | $$ | ||
\dots \rightarrow A _ {n} \rightarrow ^ { {\alpha _ n} } \ | \dots \rightarrow A _ {n} \rightarrow ^ { {\alpha _ n} } \ | ||
− | A _ {n+} | + | A _ {n+1} \rightarrow ^ { {\alpha _ n+1} } \ |
− | A _ {n+} | + | A _ {n+2} \rightarrow \dots |
$$ | $$ | ||
Line 24: | Line 24: | ||
$$ | $$ | ||
− | \mathop{\rm Ker} \alpha _ {n+} | + | \mathop{\rm Ker} \alpha _ {n+1} = \ |
\mathop{\rm Im} \alpha _ {n} . | \mathop{\rm Im} \alpha _ {n} . | ||
$$ | $$ |
Latest revision as of 20:24, 17 January 2024
A sequence
\dots \rightarrow A _ {n} \rightarrow ^ { {\alpha _ n} } \ A _ {n+1} \rightarrow ^ { {\alpha _ n+1} } \ A _ {n+2} \rightarrow \dots
of objects of an Abelian category \mathfrak A and of morphisms \alpha _ {i} such that
\mathop{\rm Ker} \alpha _ {n+1} = \ \mathop{\rm Im} \alpha _ {n} .
An exact sequence 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 is called short, and consists of an object B , a subobject A of it and the corresponding quotient object C .
Comments
Exact sequences often occur and are often used in (co)homological considerations. There are, e.g., the long homology exact sequence
\dots \rightarrow H _ {r} ( A) \rightarrow H _ {r} ( X) \rightarrow H _ {r} ( X , A ) \rightarrow H _ {r-1} ( A) \rightarrow \dots
of a pair ( X , A ) , A a subspace of X , and the long cohomology exact sequence
\dots \rightarrow H ^ {r-1} ( A) \rightarrow H ^ {r} ( X , A ) \rightarrow H ^ {r} ( X) \rightarrow H ^ {r} ( X , A ) \rightarrow \dots .
Analogous long exact sequences occur in a variety of other homology and cohomology theories. Cf. Homology theory; Cohomology; Cohomology sequence; Homology sequence, and various articles on the (co)homology of various kinds of objects, such as Cohomology of algebras; Cohomology of groups; Cohomology of Lie algebras.
An exact sequence of the form 0 \rightarrow A _ {1} \rightarrow A \rightarrow A _ {2} is sometimes called a left short exact sequence and one of the form A _ {1} \rightarrow A \rightarrow A _ {2} \rightarrow 0 a right short exact sequence. The exact sequence of a morphism \alpha : X \rightarrow Y in an Abelian category is the exact sequence
0 \rightarrow \mathop{\rm Ker} \ \alpha \rightarrow X \rightarrow Y \rightarrow \mathop{\rm Coker} \alpha \rightarrow 0 .
Exact sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exact_sequence&oldid=55185