Difference between revisions of "Dicyclic group"
From Encyclopedia of Mathematics
(Start article: Dicyclic group) |
m (→References: isbn link) |
||
Line 11: | Line 11: | ||
==References== | ==References== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H.S.M. Coxeter, | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H.S.M. Coxeter, "Regular complex polytopes" , Cambridge Univ. Press (1974) {{ISBN|0-521-20125-X}} {{ZBL|0732.51002}}</TD></TR> |
</table> | </table> |
Latest revision as of 20:50, 23 November 2023
2020 Mathematics Subject Classification: Primary: 20F05 [MSN][ZBL]
A finite group of order $4n$, obtained as the extension of the cyclic group of order $2$ by a cyclic group of order $2n$. It has the presentation $\langle n,2,2 \rangle$ and group presentation $$ A^n = B^2 = (AB)^2 \ . $$ It may be realised as a subgroup of the unit quaternions.
The dicyclic group $n=2$ is the quaternion group of order $8$.
References
[a1] | H.S.M. Coxeter, "Regular complex polytopes" , Cambridge Univ. Press (1974) ISBN 0-521-20125-X Zbl 0732.51002 |
How to Cite This Entry:
Dicyclic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dicyclic_group&oldid=51420
Dicyclic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dicyclic_group&oldid=51420