Namespaces
Variants
Actions

Difference between revisions of "Suzuki sporadic group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(details)
 
Line 18: Line 18:
 
$$
 
$$
  
constructed by M. Suzuki as the primitive permutation group of degree 1782 with point stabilizer isomorphic to the [[Chevalley group|Chevalley group]]  $  G _ {2} ( 4) $.
+
constructed by M. Suzuki as the primitive [[permutation group]] of degree 1782 with point stabilizer isomorphic to the [[Chevalley group]]  $  G _ {2} ( 4) $.
  
For other sporadic groups, see [[Sporadic simple group|Sporadic simple group]].
+
For other sporadic groups, see [[Sporadic simple group]].
  
 
====Comments====
 
====Comments====
Its Schur multiplier is  $  6 $;
+
Its Schur multiplier is  $  6 $.
its central covering is the automorphism group of the complex [[Leech lattice|Leech lattice]]. See [[#References|[a1]]].
+
Its central covering is the automorphism group of the complex [[Leech lattice]]. See [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.H. Conway,  R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of finite groups" , Clarendon Press  (1985)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J.H. Conway,  R.T. Curtis,  S.P. Norton,  R.A. Parker,  R.A. Wilson,  "Atlas of finite groups" , Clarendon Press  (1985)</TD></TR>
 +
</table>

Latest revision as of 18:33, 4 May 2023


A simple finite group of order

$$ 448 345 497 600 = 2 ^ {13} \cdot 3 ^ {7} \cdot 5 ^ {2} \cdot 7 \cdot 11 \cdot 13 , $$

constructed by M. Suzuki as the primitive permutation group of degree 1782 with point stabilizer isomorphic to the Chevalley group $ G _ {2} ( 4) $.

For other sporadic groups, see Sporadic simple group.

Comments

Its Schur multiplier is $ 6 $. Its central covering is the automorphism group of the complex Leech lattice. See [a1].

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
How to Cite This Entry:
Suzuki sporadic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Suzuki_sporadic_group&oldid=48917