Difference between revisions of "Studentized range"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 15: | Line 15: | ||
Let $ X _ {1} \dots X _ {n} $ | Let $ X _ {1} \dots X _ {n} $ | ||
be independent normally $ N( a, \sigma ^ {2} ) $- | be independent normally $ N( a, \sigma ^ {2} ) $- | ||
− | distributed random variables, and let $ X ^ {( | + | distributed random variables, and let $ X ^ {(n)} = ( X _ {(n1)} \dots X _ {(nn)} ) $ |
be the vector of order statistics constructed from the observations $ X _ {1} \dots X _ {n} $. | be the vector of order statistics constructed from the observations $ X _ {1} \dots X _ {n} $. | ||
− | Moreover, let the statistic $ \sum _ {i=} | + | Moreover, let the statistic $ \sum _ {i=1} ^ {n} a _ {i} X _ {(ni)} $, |
− | which is a linear combination of the order statistics $ X _ {( | + | which is a linear combination of the order statistics $ X _ {(n1)} \dots X _ {(nn)} $, |
be independent of some "chi-squared" distribution $ V/ \sigma ^ {2} $ | be independent of some "chi-squared" distribution $ V/ \sigma ^ {2} $ | ||
of $ f $ | of $ f $ | ||
Line 27: | Line 27: | ||
\frac{1}{s _ {f} } | \frac{1}{s _ {f} } | ||
− | \sum _ { i= } | + | \sum _ { i=1 } ^ { n } a _ {i} X _ {(ni)} |
$$ | $$ | ||
is a Studentized statistic. | is a Studentized statistic. | ||
− | The Studentized range is the Studentized statistic for which $ \sum _ {i=} | + | The Studentized range is the Studentized statistic for which $ \sum _ {i=1} ^ {n} a _ {i} X _ {(ni)} $ |
is the range of the sample $ X _ {1} \dots X _ {n} $, | is the range of the sample $ X _ {1} \dots X _ {n} $, | ||
i.e. if | i.e. if | ||
$$ | $$ | ||
− | \sum _ { i= } | + | \sum _ { i=1 } ^ { n } a _ {i} X _ {(ni)} = X _ {(nn)} - X _ {(n1)} ; |
$$ | $$ | ||
Line 44: | Line 44: | ||
$$ | $$ | ||
− | \frac{X _ {( | + | \frac{X _ {(nn)} - X _ {(n1)} }{s _ {f} } |
. | . | ||
$$ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. David, "Order statistics" , Wiley (1970)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. David, "Order statistics" , Wiley (1970)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
Line 56: | Line 59: | ||
$$ | $$ | ||
s _ {f} ^ {2} = | s _ {f} ^ {2} = | ||
− | \frac{1}{n-} | + | \frac{1}{n-1} \sum ( X _ {i} - \overline{X}\; ) ^ {2} |
− | |||
$$ | $$ | ||
Line 63: | Line 65: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.M. Mood, F.A. Graybill, "Introduction to the theory of statistics" , McGraw-Hill (1963) pp. 243</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.H. Müller, P. Neumann, R. Storm, "Tafeln der mathematischen Statistik" , C. Hauser (1977) pp. 166–169</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> A.M. Mood, F.A. Graybill, "Introduction to the theory of statistics" , McGraw-Hill (1963) pp. 243</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P.H. Müller, P. Neumann, R. Storm, "Tafeln der mathematischen Statistik" , C. Hauser (1977) pp. 166–169</TD></TR> | ||
+ | </table> |
Latest revision as of 09:49, 20 July 2021
A statistic from the class of so-called Studentized statistics, obtained as a result of a special normalization of a linear combination of order statistics constructed from a normal sample.
Let $ X _ {1} \dots X _ {n} $ be independent normally $ N( a, \sigma ^ {2} ) $- distributed random variables, and let $ X ^ {(n)} = ( X _ {(n1)} \dots X _ {(nn)} ) $ be the vector of order statistics constructed from the observations $ X _ {1} \dots X _ {n} $. Moreover, let the statistic $ \sum _ {i=1} ^ {n} a _ {i} X _ {(ni)} $, which is a linear combination of the order statistics $ X _ {(n1)} \dots X _ {(nn)} $, be independent of some "chi-squared" distribution $ V/ \sigma ^ {2} $ of $ f $ degrees of freedom. Let $ s _ {f} ^ {2} = f ^ { - 1 } V $. In this case, one says that
$$ \frac{1}{s _ {f} } \sum _ { i=1 } ^ { n } a _ {i} X _ {(ni)} $$
is a Studentized statistic.
The Studentized range is the Studentized statistic for which $ \sum _ {i=1} ^ {n} a _ {i} X _ {(ni)} $ is the range of the sample $ X _ {1} \dots X _ {n} $, i.e. if
$$ \sum _ { i=1 } ^ { n } a _ {i} X _ {(ni)} = X _ {(nn)} - X _ {(n1)} ; $$
consequently, the Studentized range takes the form
$$ \frac{X _ {(nn)} - X _ {(n1)} }{s _ {f} } . $$
References
[1] | H. David, "Order statistics" , Wiley (1970) |
[2] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
Comments
The case
$$ s _ {f} ^ {2} = \frac{1}{n-1} \sum ( X _ {i} - \overline{X}\; ) ^ {2} $$
is used for tests of normality and outlying observations, cf. [1], Chapt. 8. For a table of the quantiles of the Studentized range see [a2].
References
[a1] | A.M. Mood, F.A. Graybill, "Introduction to the theory of statistics" , McGraw-Hill (1963) pp. 243 |
[a2] | P.H. Müller, P. Neumann, R. Storm, "Tafeln der mathematischen Statistik" , C. Hauser (1977) pp. 166–169 |
Studentized range. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Studentized_range&oldid=48884