Difference between revisions of "Poly-analytic function"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 22: | Line 22: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | w = f( z, \overline{z}\; ) = \ | + | w = f( z, \overline{z}\; ) = \sum_{k=0}^ { m-1} {\overline{z}\; } {} ^ {k} f _ {k} ( z), |
$$ | $$ | ||
Line 46: | Line 46: | ||
For $ m = 1 $ | For $ m = 1 $ | ||
− | one obtains analytic functions (cf. [[ | + | one obtains analytic functions (cf. [[Analytic function]]). |
For a function $ u = u( x, y) $ | For a function $ u = u( x, y) $ |
Latest revision as of 19:59, 15 January 2024
of order $ m $
A complex function $ w = u + iv $ of the real variables $ x $ and $ y $, or, which is equivalent, of the complex variables $ z = x + iy $ and $ \overline{z}\; = x - iy $, in a plane domain $ D $ which can be represented as
$$ \tag{1 } w = f( z, \overline{z}\; ) = \sum_{k=0}^ { m-1} {\overline{z}\; } {} ^ {k} f _ {k} ( z), $$
where $ f _ {k} ( z) $, $ k = 0 \dots m- 1 $, are complex-analytic functions in $ D $. In other words, a poly-analytic function $ w $ of order $ m $ can be defined as a function which in $ D $ has continuous partial derivatives with respect to $ x $ and $ y $, or with respect to $ z $ and $ \overline{z}\; $, up to order $ m $ inclusive and which everywhere in $ D $ satisfies the generalized Cauchy–Riemann condition:
$$ \frac{\partial ^ {m} w }{\partial {\overline{z}\; } {} ^ {m} } = 0 . $$
For $ m = 1 $ one obtains analytic functions (cf. Analytic function).
For a function $ u = u( x, y) $ to be the real (or imaginary) part of some poly-analytic function $ w = u + iv $ in a domain $ D $, it is necessary and sufficient that $ u $ be a poly-harmonic function in $ D $. One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [1]).
A poly-analytic function of multi-order $ m = ( m _ {1} \dots m _ {n} ) $ in the complex variables $ z _ {1} \dots z _ {n} $ and $ \overline{z}\; _ {1} \dots \overline{z}\; _ {n} $ in a domain $ D $ of the complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, is a function of the form
$$ w = \sum _ {k _ {1} \dots k _ {n} = 0 } ^ { {m } _ {1} - 1 \dots m _ {n} - 1 } \overline{z}\; {} _ {1} ^ {k _ {1} } \dots \overline{z}\; {} _ {n} ^ {k _ {n} } f _ {k _ {1} \dots k _ {n} } ( z _ {1} \dots z _ {n} ), $$
where $ f _ {k _ {1} \dots k _ {n} } $ are analytic functions of the variables $ z _ {1} \dots z _ {n} $ in $ D $.
References
[1] | M.B. Balk, M.F. Zuev, "On polyanalytic functions" Russian Math. Surveys , 25 : 5 (1970) pp. 201–223 Uspekhi Mat. Nauk , 25 : 5 (1970) pp. 203–226 |
Poly-analytic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poly-analytic_function&oldid=48231