Namespaces
Variants
Actions

Difference between revisions of "Lefschetz number"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 33: Line 33:
  
 
$$  
 
$$  
\Lambda ( f ) =  \sum _ { i= } 0 ^ \infty   (- 1) ^ {i} t _ {i} .
+
\Lambda (f) =  \sum_{i=0}^\infty (-1)^i t_i .
 
$$
 
$$
  
Line 41: Line 41:
 
If  $  X $
 
If  $  X $
 
is a chain (cochain) complex of free Abelian groups or a topological space, then the number  $  \Lambda ( f  ) $
 
is a chain (cochain) complex of free Abelian groups or a topological space, then the number  $  \Lambda ( f  ) $
is always an integer. The Lefschetz number was introduced by S. Lefschetz [[#References|[1]]] for the solution of the problem on the number of fixed points of a continuous mapping (see [[Lefschetz formula|Lefschetz formula]]).
+
is always an integer. The Lefschetz number was introduced by S. Lefschetz [[#References|[1]]] for the solution of the problem on the number of fixed points of a continuous mapping (see [[Lefschetz formula]]).
  
 
To find the Lefschetz number of an endomorphism  $  f $
 
To find the Lefschetz number of an endomorphism  $  f $
Line 50: Line 50:
  
 
$$  
 
$$  
\Lambda ( f  )  =  \sum _ { i= } 0 ^  \infty  (- 1)  ^ {i} T _ {i} ,
+
\Lambda ( f  )  =  \sum _ {i=0} ^  \infty  (- 1)  ^ {i} T _ {i} ,
 
$$
 
$$
  
Line 62: Line 62:
  
 
$$  
 
$$  
\Lambda ( \phi )  =  \Lambda ( \psi )  =  \sum _ { i= } 0 ^  \infty  (- 1)  ^ {i}
+
\Lambda ( \phi )  =  \Lambda ( \psi )  =  \sum _ {i=0}^  \infty  (- 1)  ^ {i}
 
T _ {i} ,
 
T _ {i} ,
 
$$
 
$$
Line 81: Line 81:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lefschetz,  "Intersections and transformations of complexes and manifolds"  ''Trans. Amer. Math. Soc.'' , '''28'''  (1926)  pp. 1–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "A textbook of topology" , Acad. Press  (1980)  (Translated from German)</TD></TR></table>
+
<table>
 
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lefschetz,  "Intersections and transformations of complexes and manifolds"  ''Trans. Amer. Math. Soc.'' , '''28'''  (1926)  pp. 1–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Seifert,  W. Threlfall,  "A textbook of topology" , Acad. Press  (1980)  (Translated from German)</TD></TR><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dugundji,  A. Granas,  "Fixed point theory" , PWN  (1982)</TD></TR>
====Comments====
+
</table>
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dugundji,  A. Granas,  "Fixed point theory" , PWN  (1982)</TD></TR></table>
 

Latest revision as of 08:31, 6 January 2024


An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let $ X $ be a chain complex of Abelian groups (respectively, a topological space), $ f : X \rightarrow X $ an endomorphism of degree 0 (respectively, a continuous mapping; cf. Degree of a mapping), $ H _ {i} ( X , \mathbf Q ) $ the homology group of the object $ X $ with coefficients in the field of rational numbers $ \mathbf Q $, where

$$ \sum _ { i } \mathop{\rm dim} _ {\mathbf Q } H _ {i} ( X , \mathbf Q ) < \infty , $$

and let $ t _ {i} $ be the trace of the linear transformation

$$ f _ {*} : H _ {i} ( X , \mathbf Q ) \rightarrow H _ {i} ( X , \mathbf Q ) . $$

By definition, the Lefschetz number of $ f $ is

$$ \Lambda (f) = \sum_{i=0}^\infty (-1)^i t_i . $$

In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping $ e _ {X} $ is equal to the Euler characteristic $ \chi ( X) $ of the object $ X $. If $ X $ is a chain (cochain) complex of free Abelian groups or a topological space, then the number $ \Lambda ( f ) $ is always an integer. The Lefschetz number was introduced by S. Lefschetz [1] for the solution of the problem on the number of fixed points of a continuous mapping (see Lefschetz formula).

To find the Lefschetz number of an endomorphism $ f $ of a complex $ X $ consisting of finite-dimensional vector spaces $ X _ {i} $ over $ \mathbf Q $ one can use the following formula (which is sometimes called the Hopf trace formula):

$$ \Lambda ( f ) = \sum _ {i=0} ^ \infty (- 1) ^ {i} T _ {i} , $$

where $ T _ {i} $ is the trace of the linear transformation $ f : X _ {i} \rightarrow X _ {i} $. In particular, if $ X $ is a finite cellular space, $ \phi : X \rightarrow X $ is a continuous mapping of it into itself and $ \psi : X \rightarrow X $ is a cellular approximation of $ \phi $, then

$$ \Lambda ( \phi ) = \Lambda ( \psi ) = \sum _ {i=0}^ \infty (- 1) ^ {i} T _ {i} , $$

where $ T _ {i} $ is the trace of the transformation

$$ \psi _ {\#} : C _ {i} ( X , \mathbf Q ) \rightarrow C _ {i} ( X , \mathbf Q ) $$

induced by $ \psi $ and $ C _ {i} ( X _ {i} , \mathbf Q ) $ is the group of rational $ i $- dimensional chains of $ X $.

Everything stated above can be generalized to the case of an arbitrary coefficient field.

References

[1] S. Lefschetz, "Intersections and transformations of complexes and manifolds" Trans. Amer. Math. Soc. , 28 (1926) pp. 1–49
[2] H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German)
[a1] J. Dugundji, A. Granas, "Fixed point theory" , PWN (1982)
How to Cite This Entry:
Lefschetz number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lefschetz_number&oldid=47605
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article