Difference between revisions of "Jacobi transform"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 16: | Line 16: | ||
J \{ F ( x) \} = \ | J \{ F ( x) \} = \ | ||
f ^ { ( \alpha , \beta ) } ( n) = \ | f ^ { ( \alpha , \beta ) } ( n) = \ | ||
− | \int\limits _ { - } | + | \int\limits _ {-1} ^ { 1 } P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) dx, |
− | P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) dx, | ||
$$ | $$ | ||
Line 101: | Line 100: | ||
$$ | $$ | ||
− | \int\limits _ { - } | + | \int\limits _ {-1}^ { 1 } F ( x) |
P _ {n} ^ {( \alpha , \beta ) } ( x) ( 1 - x ) ^ \alpha | P _ {n} ^ {( \alpha , \beta ) } ( x) ( 1 - x ) ^ \alpha | ||
( 1 + x ) ^ \beta d x , | ( 1 + x ) ^ \beta d x , | ||
$$ | $$ | ||
− | which generalizes the expression given in [[ | + | which generalizes the expression given in [[Gegenbauer transform]]. |
Latest revision as of 19:56, 16 January 2024
The integral transforms
$$ J \{ F ( x) \} = \ f ^ { ( \alpha , \beta ) } ( n) = \ \int\limits _ {-1} ^ { 1 } P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) dx, $$
$$ n = 0, 1 \dots $$
where the $ P _ {n} ^ {( \alpha , \beta ) } ( x) $ are the Jacobi polynomials of degree $ n $, and $ \alpha > - 1 $ and $ \beta > - 1 $ are real numbers. The inversion formula has the form
$$ F ( x) = \ \sum _ {n = 0 } ^ \infty \frac{1}{\delta _ {n} } ( 1 - x) ^ \alpha ( 1 + x) ^ \beta P _ {n} ^ {( \alpha , \beta ) } ( x) f ^ { ( \alpha , \beta ) } ( n), $$
$$ - 1 < x < 1, $$
$$ \delta _ {n} = \frac{2 ^ {\alpha + \beta + 1 } \Gamma ( \alpha + n + 1) \Gamma ( \beta + n + 1) }{n! ( \alpha + \beta + 2n + 1) \Gamma ( \alpha + \beta + n + 1) } , $$
provided the series converges.
The Jacobi transform reduces the operation
$$ T [ F ( x)] = \ { \frac{d}{dx} } \left \{ ( 1 - x ^ {2} ) \frac{dF }{dx } + [( \alpha - \beta ) + ( \alpha + \beta ) x] \frac{dF }{dx } \right \} $$
to an algebraic one by the formula
$$ J \{ T [ F ( x)] \} = - ( n + 1) ( n + \alpha + \beta ) f ^ { ( \alpha , \beta ) } ( n) + $$
$$ + \left . \{ [( \alpha - \beta ) + ( \alpha + \beta ) x] P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) \} \right | _ {-} 1 ^ {1} . $$
When $ \alpha = \beta = 0 $ the Jacobi transform is the Legendre transform; for $ \alpha = \beta = \nu - 1/2 $ it is the Gegenbauer transform. Jacobi transforms are used in solving differential equations containing the operator $ T $. The Jacobi transform has also been defined for a special class of generalized functions.
References
[1] | E.J. Scott, "Jacobi transforms" Quart. J. Math. , 4 : 13 (1953) pp. 36–40 |
[2] | V.A. Ditkin, A.P. Prundnikov, "Integral transforms" Progress in Math. (1969) pp. 1–85 Itogi Nauk. Mat. Anal. 1966 (1967) |
[3] | A.G. Zemanian, "Generalized integral transformations" , Interscience (1968) |
Comments
See (the editorial comments to) Gegenbauer transform. Usually the Jacobi transform is written as
$$ \int\limits _ {-1}^ { 1 } F ( x) P _ {n} ^ {( \alpha , \beta ) } ( x) ( 1 - x ) ^ \alpha ( 1 + x ) ^ \beta d x , $$
which generalizes the expression given in Gegenbauer transform.
Jacobi transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_transform&oldid=47460