Namespaces
Variants
Actions

Difference between revisions of "Hilbert kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(details)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
The kernel of the [[Hilbert singular integral|Hilbert singular integral]], i.e. the function
+
The kernel of the [[Hilbert singular integral]], i.e. the function
  
 
$$  
 
$$  
Line 36: Line 36:
 
$  \tau = e  ^ {is} $.
 
$  \tau = e  ^ {is} $.
  
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR>
 +
</table>

Latest revision as of 20:27, 18 March 2024


The kernel of the Hilbert singular integral, i.e. the function

$$ \mathop{\rm cotan} { \frac{x - s }{2} } ,\ \ 0 \leq x, s \leq 2 \pi . $$

The following simple relation holds between the Hilbert kernel and the Cauchy kernel in the case of the unit circle:

$$ \frac{dt }{t - \tau } = { \frac{1}{2} } \left ( \mathop{\rm cotan} { \frac{x - s }{2} } + i \right ) dx, $$

where $ t = e ^ {ix} $, $ \tau = e ^ {is} $.


References

[a1] B.L. Moiseiwitsch, "Integral equations" , Longman (1977)
How to Cite This Entry:
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=47231
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article