Namespaces
Variants
Actions

Difference between revisions of "Folium of Descartes"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(svg image)
 
Line 24: Line 24:
 
where  $  t $
 
where  $  t $
 
is the tangent of the angle between the radius vector of the curve and the  $  x $-
 
is the tangent of the angle between the radius vector of the curve and the  $  x $-
axis. The folium of Descartes is symmetric about the axis $ y= x $(
+
axis. The folium of Descartes is symmetric about the axis $y=x$ (see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates  $  ( a 2  ^ {1/3} , a 4  ^ {1/3} ) $
see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates  $  ( a 2  ^ {1/3} , a 4  ^ {1/3} ) $
 
 
and  $  ( a 4  ^ {1/3} , a 2  ^ {1/3} ) $.  
 
and  $  ( a 4  ^ {1/3} , a 2  ^ {1/3} ) $.  
 
The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by  $  y= - x- a $.  
 
The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by  $  y= - x- a $.  
 
The surface area enclosed between the curve and the asymptote is  $  S = 3a  ^ {2} /2 $.  
 
The surface area enclosed between the curve and the asymptote is  $  S = 3a  ^ {2} /2 $.  
 
The surface area of the loop is  $  S = 3a  ^ {2} /2 $.  
 
The surface area of the loop is  $  S = 3a  ^ {2} /2 $.  
Named after R. Descartes who was the first to study it in 1638.
 
  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/f040750a.gif" />
+
This curve is named after R. Descartes who was the first to study it in 1638.
  
Figure: f040750a
+
[[File:Folium of Descartes.svg|center|300px|Folium of Descartes (a=1)]]
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Smogorzhevskii,  E.S. Stolova,  "Handbook of the theory of planar curves of the third order" , Moscow  (1961)  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Smogorzhevskii,  E.S. Stolova,  "Handbook of the theory of planar curves of the third order" , Moscow  (1961)  (In Russian)</TD></TR><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR></table>
 
 
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR></table>
 

Latest revision as of 16:37, 16 March 2023


A plane algebraic curve of order three which is given in Cartesian coordinates by the equation $ x ^ {3} + y ^ {3} - 3axy = 0 $; the parametric equations are

$$ x = \frac{3at}{1 + t ^ {3} } ,\ y = \frac{3a t ^ {2} }{1 + t ^ {3} } , $$

where $ t $ is the tangent of the angle between the radius vector of the curve and the $ x $- axis. The folium of Descartes is symmetric about the axis $y=x$ (see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates $ ( a 2 ^ {1/3} , a 4 ^ {1/3} ) $ and $ ( a 4 ^ {1/3} , a 2 ^ {1/3} ) $. The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by $ y= - x- a $. The surface area enclosed between the curve and the asymptote is $ S = 3a ^ {2} /2 $. The surface area of the loop is $ S = 3a ^ {2} /2 $.

This curve is named after R. Descartes who was the first to study it in 1638.

Folium of Descartes (a=1)

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[2] A.S. Smogorzhevskii, E.S. Stolova, "Handbook of the theory of planar curves of the third order" , Moscow (1961) (In Russian)
[a1] J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)
[a2] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)
How to Cite This Entry:
Folium of Descartes. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Folium_of_Descartes&oldid=46951
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article