Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-13"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Start article: Span)
(Start article: Adjugate matrix)
Line 1: Line 1:
 +
=Adjugate matrix=
 +
''adjoint matrix''
 +
 +
The matrix $\mathrm{adj}(A)$ of [[cofactor]]s of a [[square matrix]] $A$ over a field.
 +
Let $M_{ij}$ denote the minor formed by deleting the $i$-th row and $j$ column of $A$.  The cofactor $C_{ij} = (-1)^{i+j} \det M_{ij}$ and $\mathrm{adj} A$ has $C_{ji}$ in the $(i,j)$ position.
 +
 +
The adjugate satisfies
 +
$$
 +
\mathrm{adj}(A) \cdot A = A \cdot \mathrm{adj}(A) = (\det A) I 
 +
$$
 +
where $I$ denotes the [[identity matrix]].
 +
 +
The term '''adjoint matrix''' is frequently used, but suffers from confusion with the [[adjoint]] with respect to an [[inner product]].  The untransposed matrix of cofactors is also seen.
 +
 +
 +
====References====
 +
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.C. Aitken, "Determinants and matrices", Oliver and Boyd (1939)  {{ZBL|65.1111.05}} {{ZBL|0022.10005}}</TD></TR>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  Thomas Muir.  ''A treatise on the theory of determinants''. Dover Publications (1960) [1933]</TD></TR>
 +
</table>
 +
 
=Span=
 
=Span=
 
'''Span''' may refer to  
 
'''Span''' may refer to  
Line 38: Line 59:
 
A [[pushout]] is the [[colimit]] of a span.
 
A [[pushout]] is the [[colimit]] of a span.
  
====References====
+
==References==
 
<table>
 
<table>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Categories for the working mathematician" , Springer  (1971). ISBN 0-387-90036-5</TD></TR>
 
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Categories for the working mathematician" , Springer  (1971). ISBN 0-387-90036-5</TD></TR>

Revision as of 10:05, 6 April 2020

Adjugate matrix

adjoint matrix

The matrix $\mathrm{adj}(A)$ of cofactors of a square matrix $A$ over a field. Let $M_{ij}$ denote the minor formed by deleting the $i$-th row and $j$ column of $A$. The cofactor $C_{ij} = (-1)^{i+j} \det M_{ij}$ and $\mathrm{adj} A$ has $C_{ji}$ in the $(i,j)$ position.

The adjugate satisfies $$ \mathrm{adj}(A) \cdot A = A \cdot \mathrm{adj}(A) = (\det A) I $$ where $I$ denotes the identity matrix.

The term adjoint matrix is frequently used, but suffers from confusion with the adjoint with respect to an inner product. The untransposed matrix of cofactors is also seen.


References

[1] A.C. Aitken, "Determinants and matrices", Oliver and Boyd (1939) Zbl 65.1111.05 Zbl 0022.10005
[1] Thomas Muir. A treatise on the theory of determinants. Dover Publications (1960) [1933]

Span

Span may refer to

Span (category theory)

A diagram in a category of the form $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \end{array} $$

Two spans with arrows $(f,g)$ and $(f',g')$ are equivalent if for all $D,p,q$ the diagrams $$ \begin{array}{ccccc} & & C & & \\ & f \swarrow & & \searrow g & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} \ \ \text{and}\ \ \begin{array}{ccccc} & & C & & \\ & f' \swarrow & & \searrow g' & \\ A & & & & B \\ & p \searrow & & \swarrow q \\ & & D & & \\ \end{array} $$ either both commute or both do not commute.

A pushout is the colimit of a span.

References

[1] S. MacLane, "Categories for the working mathematician" , Springer (1971). ISBN 0-387-90036-5


Standard construction

A concept in category theory. Other names are triple, monad and functor-algebra.

Let $\mathfrak{S}$ be a category. A standard construction is a functor $T:\mathfrak{S} \rightarrow \mathfrak{S}$ equipped with natural transformations $\eta:1\rightarrow T$ and $\mu:T^2\rightarrow T$ such that the following diagrams commute: $$ \begin{array}{ccc} T^3 Y & \stackrel{T\mu_Y}{\rightarrow} & T^2 Y \\ \mu_{TY}\downarrow& & \downarrow_Y \\ T^2 & \stackrel{T_y}{\rightarrow} & Y \end{array} $$ $$ \begin{array}{ccccc} TY & \stackrel{TY}{\rightarrow} & T^2Y & \stackrel{T_{\eta Y}}{\leftarrow} & TY \\ & 1\searrow & \downarrow\mu Y & \swarrow1 & \\ & & Y & & \\ \end{array} $$

The basic use of standard constructions in topology is in the construction of various classifying spaces and their algebraic analogues, the so-called bar-constructions.

References

[1] J.M. Boardman, R.M. Vogt, "Homotopy invariant algebraic structures on topological spaces" , Springer (1973)
[2] J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978)
[3] J.P. May, "The geometry of iterated loop spaces" , Lect. notes in math. , 271 , Springer (1972)
[4] S. MacLane, "Categories for the working mathematician" , Springer (1971)


Comments

The term "standard construction" was introduced by R. Godement [a1] for want of a better name for this concept. It is now entirely obsolete, having been generally superseded by "monad" (although a minority of authors still use the term "triple" ). Monads have many other uses besides the one mentioned above, for example in the categorical approach to universal algebra (see [a2], [a3]).

References

[a1] R. Godement, "Théorie des faisceaux" , Hermann (1958)
[a2] E.G. Manes, "Algebraic theories" , Springer (1976)
[a3] M. Barr, C. Wells, "Toposes, triples and theories" , Springer (1985)
How to Cite This Entry:
Richard Pinch/sandbox-13. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-13&oldid=45269